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Abstract 

Economic theory advocates marginal cost pricing for efficient utilisation of transport 

infrastructure. A growing body of literature has emerged on the issue of marginal 

infrastructure wear and tear costs, but the majority of the work is focused on costs for 

infrastructure maintenance. Railway track renewals are a substantial part of an infrastructure 

manager’s budget, but in disaggregated statistical analyses, they cause problems for 

traditional regression models since there is a piling up of values of the dependent variable at 

zero. Previous econometric work has sought to circumvent the problem by aggregation in 

some way. In this paper we work with disaggregate (track-section) data, including the zero 

observations, but apply censored and sample selection regression models to overcome the 

bias that would result from estimation using OLS. We derive track renewal cost elasticities 

with respect to traffic volumes and in turn marginal renewal costs using Swedish railway 

renewal data over the period 1999 to 2009. Our paper is the first paper in the literature that 

we are aware of to report usage elasticities specifically for renewal costs and therefore adds 

important new evidence to the previous literature where there is a paucity of studies on 

renewals and considerable uncertainty over the effects of rail traffic on renewal costs. In the 

Swedish context, we find that the inclusion of marginal track renewal costs in the track 

access pricing regime, which currently only reflects marginal maintenance costs, would add 

substantially to the existing track access charge.  
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1. INTRODUCTION 

Marginal cost pricing of infrastructure wear and tear is of great importance from an 

economic efficiency standpoint. Over the last decade, research on the subject has gradually 

increased for all modes of transport (Nash and Sansom, 2001; Nash, 2003; Thomas et al., 

2003; Nash and Matthews, 2005; Wheat et. al., 2009). One of the reasons for the renewed 

interest in the marginal cost of rail infrastructure costs has been the move in European 

railways towards vertical separation of rail infrastructure from train operations, driven by 

successive European legislation. This legislation requires countries to set rail infrastructure 

charges based on the direct cost of running different services, including: additional “wear and 

tear” costs of running more trains; scarcity charges; and environmental charges. Non-

discriminatory mark-ups are also permitted. The changed model for organising rail transport 

in Europe has therefore created a key research need; namely to estimate the direct cost of 

running extra traffic on the network.  

Sweden was the first country to undertake such a separation in 1988, with the rest of 

Europe following later, to a greater or lesser extent (see Nash and Matthews, 2009). The 

Swedish Railway Act stipulates two types of charges for the use of infrastructure (Banverket, 

2009). The first type is special charges, which can be of two different types, either covering 

the fixed costs of the infrastructure, or costs occurring when new infrastructure has been built 

as a special project. The other type of charge is based on short run marginal costs. In turn, 

there are three different types of marginal cost based charges; the track charge, the accident 

charge and the emission charge. The first, and for our purposes most interesting, is the track 

charge, which mirrors the maintenance costs incurred by one additional tonne movement as 

a result of wear and tear on the network. Importantly, to date, the wear and tear track charge 

has not taken into account incremental renewal costs.  

The track charge is based on an analysis of data at track section level, where incurred 

maintenance costs are seen as a function of output volume (gross tonne-km) and properties 

of the infrastructure (track section length, rail age, number of switches, tunnels etc). The 

track charge for 2011 is set to SEK 0.0036/gross tonne-km as a marginal infrastructure cost 

charge2. In the rail marginal cost estimation literature, a track section represents the most 

disaggregate level at which cost data is recorded. In the case of this study, it is defined by 

the national track information system (BIS), administered by the Swedish Transport 

Administration (Trafikverket). 
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More generally, most research on railway infrastructure wear and tear has rather 

focused on the relationship between maintenance costs and traffic, while controlling for 

infrastructure characteristics. The lack of empirical evidence concerning the size of the rail 

renewal marginal cost has therefore recently drawn some attention in the literature and 

amongst policy makers (see Nash, 2005 and Wheat et. al., 2009).  

A renewal is an activity that will restore the infrastructure to its original standard. 

Renewals and maintenance are linked in such a way that lack of maintenance will force the 

infrastructure manager to renew at an earlier stage than if maintenance were undertaken 

properly and vice versa. An optimally managed railway track has a mix of maintenance and 

renewal in time over the life cycle and excluding renewals from the total picture of marginal 

infrastructure costs, would therefore be misleading. 

As rail renewals have long life cycles and therefore are rare events, disaggregate 

renewal cost data contains many zero observations – that is, no renewal is undertaken for a 

given track section in a given year. In the small number of previous econometric studies on 

renewals marginal costs, this problem has been addressed by combining maintenance and 

renewal costs to create a measure of total costs (thus eliminating the zeros); see Andersson 

(2006; 2007a), and Marti et al. (2009). Alternatively, modelling has proceeded at a less 

disaggregate level (regional or even national, for a number of countries), thus eliminating 

zero renewal costs; see Wheat and Smith (2009)3, Smith (2008) and Smith et al. (2008), 

though again maintenance and renewals have been combined in the reported, preferred 

models. Of course, both these types of aggregation merely mask the problem of zero 

renewals. Further, in general, the models involving renewals have proved to be less robust 

than maintenance-only modelling and there have also been fewer studies of the former than 

the latter. The result is that renewal cost elasticities have to be inferred from models based 

on maintenance and renewals combined, and there is therefore currently much uncertainty 

over the range of appropriate values that should be used. 

As an alternative way of circumventing the problem, Andersson (2007b) uses an 

analytical expression of marginal rail renewal costs and applies a Weibull survival model to 

study the effects of increased traffic volumes on the rail renewal cycle. Through observed rail 

ages and renewals during a six-year time frame, the expected life time of a rail segment is 

estimated as a function of traffic volume and other track characteristics. By comparing two 

discounted costs streams of infinite renewal cycles with different traffic volumes, the marginal 

cost associated with increased traffic can be derived. The analysis contains an estimation of 

deterioration elasticities for total tonnage, and passenger and freight tonnages separately. 

Marginal costs are calculated as a change in present values of renewal costs from premature 
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renewal following increased traffic volumes. One disadvantage of this approach is that it 

requires an assumption to be made about unit renewal costs in order to compute marginal 

costs. It should be noted that the latter is far from trivial given the considerable unit cost 

variation that can result from different types and volumes (as unit costs vary with scale) of 

track replacement work. 

Given the lack of previous evidence on rail renewals marginal cost, and the 

associated methodological problems experienced in previous studies, new approaches to the 

problem and new evidence is therefore called for. In this paper we utilise an alternative set of 

econometric models that are workable even for disaggregated data with a large proportion of 

zero renewals (Tobit, Heckit and the Two-part model). These approaches derive marginal 

costs directly from the econometric cost model (avoiding the aforementioned problems 

associated with survival analysis), whilst ensuring that the zero data observations are utilised 

and modelled appropriately to ensure consistent estimates of the model parameters (a more 

satisfactory approach than simply aggregating the data). We explore the results of these 

alternative approaches using Swedish railway renewal cost data.  

To our knowledge this paper is the first attempt in the literature to apply these 

techniques to disaggregate renewal cost data in railways (characterised by a data structure 

comprising a large fraction of zero values for the dependent variable). We consider this to be 

an important addition to the literature, particularly given the paucity of studies of marginal rail 

renewal costs in general and its importance in the context of setting track access charges in 

vertically separated rail systems. 

We find that the Tobit and Heckit models have limitations in modelling our renewal data, 

while the Two-part model performs best. The renewal cost elasticity with respect to output of 

gross tonne-km is around 0.55, which is higher than estimates of maintenance cost 

elasticities from the previous literature, but in line with a priori expectations (given that 

engineering evidence suggests that renewals expenditure is likely to be more variable with 

traffic than maintenance; see Abrantes et al., 2008). Our findings put the estimated elasticity 

with respect to renewal cost at the top end of the range of estimates from previous, 

aggregated maintenance and renewals econometric work.  

As noted above, the few aggregated studies that have been done are based on 

aggregating maintenance and renewals together and these studies have produced a wide 

range of estimates for the total maintenance and renewal cost elasticities. The result is that 

renewal cost elasticities have to be inferred from models based on maintenance and 

renewals combined, and there is therefore currently much uncertainty over the range of 

appropriate values that should be used. Our paper is the first paper in the literature that we 
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are aware of to report usage elasticities4 specifically for renewal costs (in our case, track 

renewal costs) and therefore adds important new evidence to the previous literature. In the 

Swedish context, the estimated marginal cost is approximately SEK 0.009 per gross tonne-

km or two and a half times higher than the current infrastructure wear and tear track access 

charge for 2011, which is based purely on maintenance marginal cost.  

The paper is organised as follows. In section 2, we introduce the modelling approach 

followed by a description of the data set in section 3. Section 4 covers the econometric 

specifications and results, while we discuss the results and draw some conclusions in section 

5. 

 

2. MODELLING APPROACH 

2.1 Regression models for truncated and censored data 

There exists an extensive literature on statistical modelling techniques for use when 

data are censored or truncated. When a relevant part of the population generating the data is 

unobserved, the data is said to be truncated. In this case, data on both the dependent and 

independent variables is not observed. For example, in a study of household income, the 

sample may only contain data for low-income households.  

Censored data is different. In this case, the dependent variable is not observable for 

some part of the population (though data on the independent variables are available). Again, 

using the study of household income as an example, above a certain threshold, income may 

only be recorded as being above that threshold (the actual income level is not recorded in 

the data set, perhaps for confidentiality reasons). This type of censoring is referred to as top-

coding. Another example is demand for tickets to major sporting events, where the latent (or 

potential) demand is not observed because in the case of a sell-out, observed ticket sales 

are limited to the capacity of the venue. In the income example, all income values above a 

certain threshold are censored to be equal to that threshold. In the ticketing example, 

observed ticket sales are a “censored version” of potential demand (see Greene, 2007). 

A second model, which is sometimes described as being a type of censored data 

model, is the corner solution model. Wooldridge (2002) describes this model as being 

relevant to a situation where a firm or household makes an (observable) choice for a 

variable, y, where y takes the value zero (the corner solution) with a positive probability, and 

otherwise is a continuous, strictly positive random variable. Examples might include 
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household expenditure on life insurance or health services, or firm expenditure on R&D 

activity. In these cases researchers are analysing continuous variables (expenditure) 

containing a spike or probability mass at zero. The zeros are not censored versions of some 

underlying variable, they are “true” zeros, since they are the actual choices of the relevant 

decision maker. For this reason, Greene (2007) states that the corner solution model is not 

actually a censored model, though noting that it produces the same model specification and 

can thus be treated as the same in terms of estimation5. 

Since our empirical application concerns observations on track renewal costs, which 

may be positive or zero, resulting from the choice of the infrastructure manager, we proceed 

to describe the estimation strategies for the corner solution interpretation of the censored 

regression model. Following the treatments in Wooldridge (2002) and Greene (2007), the 

censored model considers the classical regression model for the underlying dependent 

variable y*6: 

  

 ],0[~, 2'* σεεβ Nxy iiii +=  (1) 

 

For the censored model the observed data, yi, is generated as follows: 

 

 ),0max( *

ii yy =  (2) 

 

Proceeding using ordinary least squares (OLS), regressing yi on x, gives biased and 

inconsistent estimates of β, since if E(y*|x) = x’β, the censoring in the data means that E(y|x) 

will be non-linear in x’β. Therefore, E(ε|x) is a function of x (so is not equal to zero). As 

Greene (2007, p. 703) notes, this non-linearity means that OLS on the observed data is 

“unlikely to produce an estimate that resembles β”. Further, OLS opens up the possibility of 

negative predicted values of yi. Intuitively, the problem arises from trying to fit a linear model, 

with constant partial effects, to a sample with a set of values (the zeros) where changes in 

the x value have no impact on the dependent variable. 

A natural question to ask then is whether the researcher should throw away the zero 

observations and apply OLS to the remaining data points. In this case, a “truncated 

regression model”, estimated via maximum likelihood (ML), should be applied (see Greene, 

2007). However, in our case, where the zeros are “true zeros” and thus contain useful 

information, it is inappropriate to proceed in this way.  

                                                 
5
 Though not necessarily interpretation as explained further below. 
6
 In the context of the corner solution model, �∗ is simply a construct to help us formulate the model. In the corner 
solution model, � is both the observed data and the variable that we are interested in understanding. Explaining 
�∗ has little value in the corner solution model, in contrast to the censored interpretation.  
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For our case, the corner solution model, there are broadly three ways to proceed in 

terms of estimation: the Tobit model (Tobin, 1958; Amemiya, 1985), the Two-part model 

(Cragg, 1971) and the sample selection model first proposed by Heckman (1979), which is 

often referred to as the Heckit model. Each of these is discussed in turn below.  

The Tobit model corrects for the piling up of zeros, which violates the standard OLS 

assumption of the dependent variable following a conditional normal distribution, avoid 

negative predictions and also give more reasonable estimates of partial effects (Wooldridge, 

2009). The Tobit model proceeds by applying maximum likelihood estimation to all of the 

data points (including the zeros). This procedure results in consistent estimates of the model 

in (1).  

However, Cragg (1971) proposes an alternative Two-part model that nests the Tobit 

model as a special case. The Two-part model can be written as the probability of observing y 

> 0, given X: 

 

 ),(]|0Pr[ 11

'

1 εβxxy Φ=>  (3) 

 

where a probit model is the natural choice for the first part. The second part is then a 

truncated regression model: 

 

 2

'

222

'

2 ],0|[],0|[ βεβ xxyExxyyE =>+=>   (4) 

 

The model here implies that the value of y (say expenditure), given that it is positive, 

and after controlling for the regressors (x), is independent of the decision whether to make 

any expenditure at all.  

A number of points are worth noting in respect of the Two-part model. First the Two-

part model considers that the data generating process (DGP) for the decision to participate – 

in this case, to renew or not – maybe different from the DGP for the decision of how much to 

spend. This flexibility arises, firstly since the regressors can differ in each decision equation 

(�� need not equal ��) and second, even if the regressors are the same, the coefficients can 

be different (�� need not equal ��). A much quoted example in the literature as to the 

usefulness of this model is given by Fin and Schmidt (1984) in which it is pointed out that the 

probability of a fire occurring in a building, and the cost of repair in the event of a fire, might 

both be affected by the age of the building, but the two effects might take opposite signs. We 

may expect a priori that some of the candidate regressors for this study maybe statistically 

significant in one equation but not in the other or take different signs (see section 2.2 for 

further discussion of this point in respect of this study). 
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Second, the Two-part model imposes that the errors in each part are independently 

distributed. Thus, whilst correlation is allowed for in the measured regressors between parts, 

the residuals are not correlated. Correlation between residuals often arises if the reason for 

censoring was due to sample selection. However there is no sample selection issue in the 

corner solution interpretation; the zeros are true zeros. However correlation in residuals 

could result due to correlation between unobserved effects in each part of the model. Thus it 

is an empirical matter as to whether the assumption is reasonable and importantly, through 

estimation of the Heckit model (discussed below), we can test the validity of this assumption. 

Third, the Two-part model enables a log-linear specification to be adopted in the 

second part of the model, which is useful from a cost modelling perspective. This is because 

only strictly positive values of y are taken forward into the second stage and so ln(y) is 

defined for all observations in the truncated regression7. Fourth, the Two-part model permits, 

but does not require the same regressors to appear in both parts of the model. If the same 

regressors appear in both parts, and �� � �� then the Two-part model simplifies to the Tobit 

case (and this restriction is testable). 

The final class of model that we consider is the Heckit model which has been 

extensively used for censored and truncated data (Heckman, 1979). The motivation behind 

this model is to address the potential problem of sample selection bias. That is, there is 

assumed to exist a model that applies to the underlying data, but the sample selected has 

not been selected randomly from the population. Therefore if OLS is carried out only on the 

observed values, biased estimates will result. The Heckit was developed for wage equation 

estimation and the model includes the effect on wages for both actual and potential workers. 

Those who do not work are not observed, and this group is also likely to have relatively low 

wages, when they do work. The Heckit explicitly models the sample selection process (via a 

probit model), and then applies OLS to a second outcome equation, utilising just the 

observed data (in the censored case, excluding the censored data), but with an additional 

variable included, computed based on the parameter values from the probit model (see 

Greene, 2007). The additional variable facilitates correlation between errors in the two 

equations. As such the model can be thought of as an extension of the Two-part model. 

Importantly, the restriction that the coefficient on the additional variable is equal to zero can 

be tested.  

The Heckit can be formalised as a selection equation (5) and an outcome equation (6). 

 

 ),(]|0Pr[ 11

'

1 εβxxy Φ=>  (5) 
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 The log-linear specification can be done in a Tobit model as well, but requires some data manipulation, which is 
described in 4.2. 
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where			
��
����
 is the estimated inverse Mills ratio �
��

����
/Φ
��
����). The correlation between 

the errors in the two stages is given as � � ���/��. A simple t test of whether or not 012 =σ

(or ρ = 0) can be used to test the null hypothesis that the Two-part model is correct (the 

alternative hypothesis being that the Heckit model is the correct model)8.  

As alluded to above, the motivation for the Heckit model is less strong in the corner 

solution interpretation than in the censoring interpretation, given that sample selection bias is 

not applicable to the corner solution case. The zeros do not represent observations for which 

the potential (or latent) outcome is missing, but are instead actual outcomes. Instead it is an 

empirical matter as to whether there is correlation between errors in the two stages. This 

may arise if unobserved effects are correlated between the two equations. It should be noted 

that while the Heckit model is identified with �� � ��, identification is likely to be weak since it 

is only identified by the parameter non-linearity of the Inverse-Mills ratio (the additional 

variable in the second stage)9. Identification is stronger if �� � �� at least for some elements, 

however as noted extensively in the literature, it is often difficult to a priori justify which 

regressors to drop from one of the parts (see, e.g. Dow and Norton, 2003, and Cameron and 

Trivedi, 2009). However it should be noted that the significance of individual coefficients is 

not of primary interest in the corner solution approach, instead the unconditional marginal 

effects (or alternatively elasticities) are of more importance. These are combinations of 

individual coefficients and so may be well identified even if the individual coefficients are not. 

So while there is less compulsion to adopt a Heckit model (and indeed there is some 

evidence to suggest that the Two-part model performs better (Dow and Norton, 2003), the 

Heckit model is a viable alternative for a corner solution model (Leung and Yu, 1996). 

2.2 Application to the problem of modelling railway renewal costs  

The key issue in this section is to determine how the above methods can be applied to 

our problem of obtaining marginal costs for railway infrastructure renewal. Our data set (see 

section 3) comprises data on 190 track sections where in any given year the observed track 

                                                 
8
 As discussed in Dow and Norton (2003), the t test can still be used even though the Two-part model is not 
generally nested within the Heckit (see also Leung and Yu, 1996). 
9
 The t test that can be used to distinguish between the Two-part and the Heckit model is also affected by 
multicollinearity problems (see Leung and Yu, 1996). 
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renewal costs are either positive or zero (and where almost 60% of the observations are 

zeros, since track has a long asset life). Further, as noted earlier, the zero observations are 

true zeros, and thus the corner solution interpretation is the relevant one in our case. 

From the above literature review, the three main candidates for application to our data 

set are: 

• Single equation Tobit model 

• Cragg’s Two-part model 

• Heckman’s selection model 

Adopting the appropriate model from this model class ensures that consistent 

estimates are produced, which would not be the case if analysis proceeded by simply 

carrying OLS on all the data, or OLS on the positive values.  

There is a further question as to which of these three models is, a priori, likely to be 

the most appropriate to our particular problem. At a conceptual level, it seems reasonable to 

think of track renewal costs being explained by a two part process: firstly there is a decision 

whether to renew, and secondly, there is a decision about the quality of the renewal to be 

undertaken, which will determine the unit cost and thus overall cost of the renewal.  

The probability of a renewal occurring will depend on the state of the asset relative to 

relevant asset condition and safety standards. This in turn will depend on the age and 

characteristics of the track and the volume and type of traffic that has run on the section. The 

quality, and in turn overall cost of the renewal, will depend on a range of factors, for example 

the type of track being replaced, and the loads that it is expected to bear. The age of the 

track may also affect the cost of the work carried out, as it could impact on whether the rail, 

sleepers, and ballast all need replacing together (or not), and indeed whether major work is 

required on the sub-structure.  

It is therefore possible to think of the variables included in the two-stages having 

different coefficients, possibly also with different signs. For example, higher quality track 

may, other things equal, reduce the probability of a renewal occurring, but would be expected 

to cause the cost of the renewal undertaken to be higher. Older track would, other things 

equal, be expected to increase the probability of renewal, as the asset reaches the end of its 

life, but its impact on the cost of renewal is driven by different factors as noted above. It is 

however not easy to think of variables that would only be included in one stage. The kinds of 

variables that are typically available for rail marginal cost studies (see section 3), such as 

traffic volumes, track age and characteristics are all likely to influence both the probability of 

and cost of renewal undertaken, though perhaps with different coefficients as noted. 

As noted in section 2.1, the problem of finding a variable that is included in the first 

(selection) equation but not in the second (outcome) equation, has been well documented in 
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the literature; and the failure in this matter is likely to result in identification problems with the 

Heckit model. Further, as noted in section 2.2, there has been some discussion of whether 

the Heckit model is appropriate for corner solution applications, given that there is no sample 

selection problem, and Dow and Norton (2003) have presented evidence to show that the 

Two-part model performs better in such cases. It is, however, an empirical matter as to which 

model fits the data better, and in this paper we therefore estimate both the Two-part model 

and the Heckit and perform appropriate testing.  

Since we have good reasons to expect that the explanatory variables will affect the 

decision to participate, and decision of how much to spend on renewals, differently, we would 

expect the Two-part model to perform better than the more restrictive Tobit. Again, however, 

this is an empirical matter, and we therefore also estimate the Tobit and perform the relevant 

tests. In line with the literature, we therefore estimate and compare the results of all three of 

the candidate models noted above. 

  

3. THE DATA 

There is no readily available, single database containing all data on costs, traffic and 

infrastructure required for our analysis. Therefore, our data used been gathered from 

different sources within the Swedish Transport Administration (Trafikverket)10. The collection 

and assimilation of this data was therefore, in itself, a major undertaking.  

The total data set contains 2093 observations and covers approximately 190 track 

sections for a period of eleven years, from 1999 to 2009. However, missing traffic data on 

some peripheral lines and station areas restricts us to use a sample of 1663 observations on 

166 track sections in our estimations. Descriptive statistics are given in table 1. The track 

sections are defined by the national track information system (BIS), administered by 

Trafikverket. The length of the track sections, including multiple tracks, varies from 2.6 

kilometres to over 260 kilometres, with an average of about 78 kilometres. The number of 

annual observations varies between 145 and 159. One reason for this variation is that some 

track sections have been merged or abandoned, while some new sections have been formed 

during this period. 

The cost data originates from Trafikverket’s accounting system, Agresso. The cost 

data covers track renewal costs at a track section level. Track renewals make up roughly half 

of total rail infrastructure renewal costs. Out of the 1663 observations, 958 or almost 60 per 

                                                 
10
 The Swedish Rail Administration (Banverket) merged with the Swedish Road Administration (Vägverket) on 

April 1, 2010 and formed the Swedish Transport Administration (Trafikverket). All our data has been collected 
from Banverket, but we refer to Trafikverket as the provider of information as Banverket no longer exists. 
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cent of the track renewal cost observations equals zero, i.e. for many observations, no 

renewal has occurred, which gives an accumulation of zeros in the data set. Further, 

approximately 2 per cent of the track sections have had track renewals in all of the studied 

years, while roughly 11 per cent of the track sections have not had track renewals in any of 

the years. At the overall network level, there has been a notable variation and increase in 

total track renewal costs during the period in question, as illustrated by figure 1. This reflects 

a generally increased focus on track renewals, as well as an allocation of further resources to 

this area. 

 

Table 1. Descriptive statistics 
 

1 
Annual cost in 2009 prices.

 2 
Defined as gross tonne-km divided by track-km. 3 

In logs where relevant 

 

Since the separation of train operation from infrastructure management in Sweden in 

1988, the supply of traffic data has become more problematic, particularly in view of the 

higher level of competition on the tracks. Detailed traffic data has therefore been retrieved 

from different sources such as train operators and published timetables, and for later years 

from Trafikverket. Generally, traffic has risen in the period in question from an average of 6 

million gross tonnes per track section in 1999 to 7.7 million in 2009, peaking at 7.9 million in 

2008. 

Data on characteristics of the infrastructure have been retrieved from the national 

track information system, BIS. This data contains inter alia rail age, switches, track length, 

bridges and tunnels. Further, dummy variables representing different track management 

regions of Sweden are included the data set. These variables will represent geographical 

differences, such as need for winter services, and potentially differences in managerial skills. 

  

Variable Mean Std.Dev. Min Max Variable 

name
3
 

Track renewal cost (SEK)
1
 3 342 144 16 100 000 0 243 000 000 lnccr 

Section length (meters) 77 801.3 52 394.8 2 642 261 561 lntsl 

Gross tonnes per track section 

(tonnage density)
2
 

7 183 785 7 588 555 15.8 46 900 000 lntgt 

Number of trains 15 583.8 17 866.3 0.2193 132 501 lntt 

Tunnels (meters) 383.1 1 487.0 0 13 802.4 lntun_tl 

Bridges (meters) 649.7 983.8 0 9 822 lnbri_tl 

Number of joints 173.4 121.8 0 730 lnjoints 

Number of switches 52.0 46.9 2 353 lnswit 

Switches
 
(meters) 1575.8 1374.6 58.03 9 070 lnswit_tl 

Switch age (years) 20.4 9.1 1 67.7 lnswag 

Rail weight (kg) 50.9 5.1 32 60 lnrlwgh 

Rail age (years) 20.2 11.5 1 98 lnrail_age 

West region (dummy variable) 0.1606 0.3672 0 1 treg_wes 

North region (dummy variable) 0.1294 0.3356 0 1 treg_nth 

Central region (dummy variable) 0.1990 0.3994 0 1 treg_ctr 

South region (dummy variable) 0.2592 0.4383 0 1 treg_sth 
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Figure 1: Total Track Renewal Cost Between 1999 and 2009 (2009 Prices).  

 

 

Overall we have been able to collect a high quality substantial data set that enables 

us to explore the relationship between track renewal costs and traffic volume, taking account 

of a range of infrastructure characteristics and regional (dummy) variables. We now proceed 

to present and discuss the results. 

 

4. ECONOMETRIC RESULTS 

4.1 Model specification 

 

As discussed in section 2, we have three different model candidates that would suit 

our data and we report the results of all three models and carry out appropriate testing to 

arrive at a preferred model. The general specification is to use track renewal costs or the 

probability of a track renewal as dependent variables. The cost variable (in log form) is used 

in the Tobit and the outcome equations of the Two-part and Heckit models. The probability 

variable is used in the selection equations of the latter two models.  

As independent variables, we use the logs of track section length (lntsl), total gross 

tonnes per track section (or tonnage density; lntgt), switch age (lnswag), and rail weight 

(lnrlwgh), together with four regional dummy variables (treg_yyy) that should pick up 

remaining unobserved heterogeneity between the sections. We also include ten dummy 

variables for year 2000 – 2009 (year200X). All other variables in table 1 have not been found 

to improve our models.  
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Our primary concern in this paper is with the unconditional elasticity of cost with 

respect of tonnage density. However, it is worth briefly commenting on the expected signs of 

the coefficients in the selection and outcome equations for the Two-part and Heckit models. 

First, the length of a track section (lntsl) is included in both the selection and outcome parts 

of the model because the track sections are not of equal length. Thus, in the first stage, a 

longer track section is more likely to see part of the section renewed. Whilst some data exists 

at a further level of disaggregation (track segment), cost data is not available at that level. 

Our data set is therefore the most disaggregate level at which cost and cost driver 

information exists in Sweden. In the second stage section length is a proxy for the size of the 

renewal undertaken. In both stages we expect the coefficient on section length to be positive. 

Likewise, we expect total gross tonnes per track section (tonnage density) to increase 

both the probability of a renewal and the cost of renewal undertaken. At this point we note 

that in the first stage, (annual) tonnage density is acting as a proxy for cumulative tonnage. 

At present we do not have a robust measure of cumulative tonnage, but we hope to develop 

this and utilise it in future work. In the second stage, tonnage density is again likely to have a 

positive effect, but its effect may come through in respect of expected future tonnage, as that 

would affect the quality of a renewal to be done. To the extent that current tonnage is a good 

proxy for both past and future traffic, this distinction may be unimportant. 

Switch age is a proxy for track age and is included in place of rail age, which, 

surprisingly, proved to be insignificant in both stages of the model. We would expect older 

track (proxied here via switch age), other things equal, to have a higher probability of a 

renewal, though its effect on the cost of renewal is ambiguous for the reasons outlined in 

section 2.2. Increased rail weight would, other things equal, be expected to reduce the 

probability of a rail renewal, since the rail quality is higher. In the second stage rail weight 

would be expected to increase the cost of renewals as higher quality rail is being installed, 

but at the same time other factors, such as the age and type of sleepers and the condition of 

the sub-structure could come into play. Finally, we include regional and year dummy 

variables to capture unobserved heterogeneity between sections, budget fluctuations and 

other time trends, but with no a priori expectation on signs. All estimations are done in Stata 

10 (StataCorp, 2007). 

4.2 Estimation outputs 

The basic model estimation outputs for the Tobit, Two-part and Heckit models are 

shown in Tables 2 to 4 below. These are shown for completeness. Our key interest is in the 

elasticity of cost with respect tonnage density (and the associated marginal cost), which we 

discuss in section 4.3 below.  
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The Tobit model was originally developed to deal with expenditure data (Tobin, 1958), 

and with expenditure data it is often more convenient to model this type of data in logarithmic 

form to alleviate the problems of skewness. Further, cost function estimation in the literature 

generally proceeds using a logarithmic functional form. Given that our data set contains zero 

observations for the dependent variable, to estimate the Tobit model in log form, we first 

need to transform our data as pointed out by Cameron and Trivedi (2009). By finding the 

minimum log value of our positive observations, we set the missing observations 

infinitesimally below the minimum value. We need to redefine the lower limit for censoring not 

being zero, but rather just below the minimum log value. 

 

Table 2. Tobit Results 

Variable Coefficient Standard error t P 

value 

95% conf. Interval 

 

lntsl 3.177319 0.331984 9.57 0.000 2.526164 3.828475 

lntgt 2.033007 0.224192 9.07 0.000 1.593275 2.472738 

lnswag 1.632077 0.535632 3.05 0.002 0.581485 2.682669 

lnrlwgh -7.601759 3.269037 -2.33 0.020 -14.013670 -1.189846 

treg_nth 1.584977 0.777734 2.04 0.042 0.059525 3.110429 

treg_ctr 0.044501 0.704283 0.06 0.950 -1.336884 1.425886 

treg_sth 1.554795 0.706620 2.20 0.028 0.168825 2.940765 

treg_eas 1.547125 0.712152 2.17 0.030 0.150304 2.943946 

year00 -0.898373 1.127719 -0.80 0.426 -3.110289 1.313544 

year01 1.519132 1.071565 1.42 0.156 -0.582643 3.620906 

year02 3.911651 1.036689 3.77 0.000 1.878281 5.945020 

year03 4.035787 1.052588 3.83 0.000 1.971234 6.100341 

year04 4.321607 1.050723 4.11 0.000 2.260711 6.382503 

year05 3.774779 1.054585 3.58 0.000 1.706308 5.843250 

year06 5.085104 1.045593 4.86 0.000 3.034271 7.135937 

year07 5.173595 1.048477 4.93 0.000 3.117105 7.230085 

year08 5.716598 1.038124 5.51 0.000 3.680414 7.752781 

year09 7.706843 1.033130 7.46 0.000 5.680455 9.733231 

constant -39.916250 11.674660 -3.42 0.001 -62.815020 -17.017480 

Sigma 7.250160 0.222141   6.814451 7.685869 

Number of obs = 1663, LR chi2(18)= 396.52, Prob > chi2 = 0.0000, Log likelihood = -2935.8088, Pseudo R2  = 0.0633 

958  left-censored observations at lnccr_tob<=6.0532551, 705 uncensored observations 

 

Concerning model selection, the Tobit gives a first impression of reasonable estimates. 

However, a likelihood ratio test of the Tobit model as compared to the more flexible Two-part 

model shows that the Tobit restriction can be rejected at any reasonable levels of 

significance. With regard to the choice between the Two-part and Heckit models, we carry 

out the standard t test on the lambda coefficient (defined here as � ∙ ��); see section 2. As 

shown in Table 3, we cannot reject the null hypothesis that the correlation between the errors 

in the two stages is zero even at the 10% level. This finding leads us to prefer the Two-part 

model. However, since the power of this test is affected by the multi-collinearity problems 

that often beset the Heckit model in empirical applications, we follow the approach 

recommended in Dow and Norton (2003), and utilise the empirical mean square error 
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(EMSE) criterion (computed based on the main elasticity of interest, the estimated elasticity 

with respect to tonnage density). We find that the Two-part model has the lower empirical 

MSE for this estimate, which again favours the Two-part model according to this criterion. 

 

Table 3. Two-Part Model Results 

Variable/ 

Equation 

Coefficient Robust 

standard error 

z P value 95% conf. interval 

Selection 

equation 

      

lntsl 0.454107 0.051307 8.85 0.000 0.353548 0.554668 

lntgt 0.302315 0.035914 8.42 0.000 0.231924 0.372706 

lnswag 0.219649 0.093094 2.36 0.018 0.037189 0.402109 

lnrlwgh -1.083273 0.521021 -2.08 0.038 -2.104454 -0.062091 

treg_nth 0.241668 0.123099 1.96 0.050 0.000398 0.482937 

treg_ctr -0.002100 0.109703 -0.02 0.984 -0.217214 0.212814 

treg_sth 0.208522 0.110179 1.89 0.058 -0.007426 0.424469 

treg_eas 0.284138 0.113048 2.51 0.012 0.062568 0.505708 

year00 -0.123794 0.163989 -0.75 0.450 -0.445207 0.197619 

year01 0.188312 0.163064 1.15 0.248 -0.131286 0.507911 

year02 0.624562 0.157700 3.96 0.000 0.315280 0.933844 

year03 0.599936 0.160912 3.73 0.000 0.284555 0.915317 

year04 0.633515 0.162522 3.90 0.000 0.314977 0.952053 

year05 0.558197 0.165490 3.37 0.001 0.233842 0.882552 

year06 0.779137 0.167183 4.66 0.000 0.451466 1.106809 

year07 0.814997 0.165403 4.93 0.000 0.490812 1.139181 

year08 0.950275 0.164088 5.79 0.000 0.628668 1.271882 

year09 1.307138 0.169716 7.70 0.000 0.974400 1.639776 

constant -6.908049 1.868068 -3.70 0.000 -10.569400 -3.246702 

Outcome 

equation 

      

lntsl 0.787886 0.144696 5.45 0.000 0.504287 1.071485 

lntgt 0.284667 0.096559 2.95 0.003 0.095414 0.473910 

lnswag 0.544509 0.270409 2.01 0.044 0.014517 1.074500 

lnrlwgh -2.468350 1.361774 -1.81 0.070 -5.137378 0.200679 

treg_nth 0.106308 0.312252 0.34 0.734 -0.505694 0.718300 

treg_ctr -0.121240 0.309452 -0.39 0.695 -0.727754 0.485276 

treg_sth 0.493809 0.299598 1.65 0.099 -0.093392 1.081009 

treg_eas -0.368183 0.277127 -1.33 0.184 -0.911343 0.174977 

year00 -0.185250 0.657958 -0.28 0.778 -1.474824 1.104323 

year01 0.224342 0.504700 0.44 0.657 -0.764852 1.213536 

year02 -0.651508 0.484902 -1.34 0.179 -1.601898 0.298881 

year03 -0.189770 0.480178 -0.40 0.693 -1.130902 0.751362 

year04 -0.066083 0.466494 -0.14 0.887 -0.980394 0.848228 

year05 -0.231088 0.489100 -0.47 0.637 -1.189707 0.727531 

year06 -0.376985 0.476650 -0.79 0.429 -1.311203 0.557232 

year07 -0.484181 0.465505 -1.04 0.298 -1.396553 0.428191 

year08 -0.696808 0.441673 -1.58 0.115 -1.562470 0.168855 

year09 -0.420119 0.440876 -0.95 0.341 -1.284220 0.443982 

constant 8.986663 4.820211 1.86 0.062 -0.460776 18.434100 

Sigma 2.306333 0.068140 33.85 0.000 2.172781 2.439885 

Number of obs = 1663, Log pseudolikelihood = -2535.9913, Wald chi2(18) = 326.51, Prob > chi2 = 0.0000 
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Table 4. Heckit (two step) Model Results 

Variable/ 

Equation 

Coefficient Standard error z P value 95% conf. interval 

 

Selection 

equation 

      

lntsl 0.454107 0.052144 8.71 0.000 0.351907 0.556308 

lntgt 0.302315 0.035914 8.42 0.000 0.231925 0.372705 

lnswag 0.219649 0.083756 2.62 0.009 0.055490 0.383808 

lnrlwgh -1.083273 0.523503 -2.07 0.039 -2.109320 -0.057226 

treg_nth 0.241668 0.126954 1.90 0.057 -0.007157 0.490493 

treg_ctr -0.002100 0.113599 -0.02 0.985 -0.224850 0.220451 

treg_sth 0.208522 0.113840 1.83 0.067 -0.014601 0.431645 

treg_eas 0.284138 0.115858 2.45 0.014 0.057061 0.511215 

year00 -0.123794 0.173099 -0.72 0.475 -0.463061 0.215474 

year01 0.188312 0.164735 1.14 0.253 -0.134563 0.511187 

year02 0.624562 0.160832 3.88 0.000 0.309338 0.939787 

year03 0.599936 0.163593 3.67 0.000 0.279299 0.920572 

year04 0.633515 0.163402 3.88 0.000 0.313254 0.953776 

year05 0.558197 0.162900 3.43 0.001 0.238918 0.877475 

year06 0.779137 0.162617 4.79 0.000 0.460415 1.097860 

year07 0.814997 0.163665 4.98 0.000 0.494219 1.135774 

year08 0.950275 0.163720 5.80 0.000 0.629370 1.271179 

year09 1.307138 0.166874 7.83 0.000 0.980071 1.634204 

constant -6.908049 1.867916 -3.70 0.000 -10.569100 -3.247000 

Outcome 

equation 

      

lntsl 1.504084 0.599180 2.51 0.012 0.329713 2.678456 

lntgt 0.763474 0.399647 1.91 0.056 -0.019819 1.546768 

lnswag 0.913202 0.394487 2.31 0.021 0.140022 1.686382 

lnrlwgh -4.281429 2.183206 -1.96 0.050 -8.560435 -0.002424 

treg_nth 0.447206 0.466730 0.96 0.338 -0.467567 1.361979 

treg_ctr -0.115036 0.345665 -0.33 0.739 -0.792528 0.562455 

treg_sth 0.780079 0.421626 1.85 0.064 -0.046293 1.606452 

treg_eas 0.070373 0.494565 0.14 0.887 -0.898957 1.039703 

year00 -0.334629 0.631496 -0.53 0.596 -1.572338 0.903080 

year01 0.581040 0.640964 0.91 0.365 -0.675225 1.837306 

year02 0.436196 1.020355 0.43 0.669 -1.563662 2.436054 

year03 0.864800 1.001267 0.86 0.388 -1.097648 2.827248 

year04 1.030518 1.029039 1.00 0.317 -0.986361 3.047397 

year05 0.720949 0.937829 0.77 0.442 -1.117163 2.559061 

year06 0.926991 1.173352 0.79 0.430 -1.372737 3.226719 

year07 0.891946 1.223472 0.73 0.466 -1.506015 3.289908 

year08 0.853952 1.345720 0.63 0.526 -1.783612 3.491515 

year09 1.617156 1.710504 0.95 0.344 -1.735370 4.969681 

constant -3.795208 11.68794 -0.32 0.745 -26.703150 19.112740 

mills lambda 2.59351 2.050877 1.26 0.206 -1.426135 6.613156 

rho 0.85007      

sigma 3.05095      

lambda 2.59351 2.050877     

Number of obs = 1663, Censored obs = 958, Uncensored obs = 705, Wald chi2(36) = 350.70, Prob > chi2 = 0.0000 

 

Before turning to the main results of interest, namely the cost elasticities with respect to 

tonnage, we briefly comment on the coefficient estimates in the preferred, Two-part model. 

As expected, section length and tonnage density both have positive coefficients in both the 

probability (Selection) and conditional regression (Outcome) equations. Switch age also has 

the expected positive coefficient in the first equation. As discussed earlier, its sign in the 
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second equation is ambiguous, and in this case found to be positive. Rail weight also has the 

expected, negative sign in the first equation, and as discussed earlier, its sign in the second 

equation is ambiguous, and in this case found to be negative also. 

4.3 Cost predictions and elasticities 

Our main interest is in the cost elasticity with respect to tonnage density, as the 

marginal cost is the product of the estimated cost elasticity and the predicted average cost. 

Dow and Norton (2003) argue that where the Two-part and Heckit models are applied to 

corner solution data then it is the cost elasticities and marginal costs associated with the 

actual values of the dependent variable (cost) that are of interest rather than the elasticities 

and marginal costs of the latent variable. This is in contrast to the standard interpretation of 

these models where they are applied to data which is subject to sample selection.  

Importantly note that both the marginal costs and the elasticities for both models 

depend on the coefficients from both stages of the models; the decision to renew and the 

cost of the renewal should it go ahead. Thus they represent the effect of increasing usage on 

cost taking into account the change in likelihood of undertaking a renewal and any change in 

the cost of a renewal should it be undertaken. It should be emphasised that both marginal 

costs and elasticities are non-linear functions of multiple parameters. Dow and Norton derive 

the formula for the elasticity when the dependent variable is in log form (independent 

variables in non-logged form). In our case, when the dependent and independent variables 

are all in log-form, the formula for the Two-part and Heckit models are shown in equations (7) 

and (8) respectively (see van de Ven and van Praag, 1981): 
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Table 5 shows the elasticities, together with their standard errors and confidence 

intervals for the preferred Two-part model, together with the results for the comparator 

models. The (average) marginal cost estimate for the Two-part model is shown in Table 6, 

together with its standard error. 

The elasticity at the sample mean for the preferred model is around 0.55. That is, a 1 

per cent change in traffic will increase renewal costs by 0.55 per cent. The point estimates 

for the comparator models are higher, though in the case of the Heckit model, this is 
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estimated rather imprecisely. As noted above, based on relevant testing, the Two-part model 

is our preferred model and, as discussed in the next section, the estimated elasticity from this 

model is supported by engineering and other evidence. The preferred model produces a 

weighted average marginal cost estimate of SEK 0.009 per gross tonne-km. 

 

Table 5: Elasticities With Respect To Tonnage Density 

Model Elasticity* (lntgt) Standard error z p value 95 % Conf. Interval 

Two-part 0.547 0.105 5.190 0.000 0.341 0.754 

Heckit 0.771 0.400 1.930 0.054 -0.012 1.555 

Tobit 0.687 0.074 9.258 0.000 0.542 0.832 

* Calculated at the sample mean 

 

Table 6: Marginal Cost Estimates: Two-part Model 

 Obs. Weighted mean* Standard error 95 % Conf. Interval 

Marginal cost 1663 0.009 0.002 0.0088 0.0097 

* The marginal cost is weighted by gross tonne-km’s per track section 

5. DISCUSSION AND CONCLUSIONS 

In this paper, we have analysed railway track renewal costs using Swedish track 

section data from 1999-2009. We have estimated three different regression models; the 

Tobit, the Two-part and the Heckit. All of these models have properties to make them 

suitable for estimation when data holds a large fraction of true zeros in the dependent 

variable. Our preferred model is the Two-part model, which performs best in comparison with 

the Tobit and Heckit models. 

We find that the cost elasticity with respect to output (gross tonne-km) is around 0.55. 

This is higher than previously found for analyses of maintenance costs, which suggests a 

range of 0.20-0.35 (Wheat et. al., 2009). However, this finding is in line with a priori 

expectations, since engineering evidence suggests that renewals are more variable with 

traffic than maintenance (see Abrantes et. al., 2008).  

We now turn to consider how our results fit into the previous literature (see Table 7). A 

few points need to be borne in mind at this stage. First, as compared to studies of 

maintenance marginal costs, there is a relative shortage of studies involving renewals costs. 

Second, and perhaps more importantly, all of the previous studies have modelled 

maintenance and renewals together, and these studies have produced a wide range of 

estimates for the total maintenance and renewals cost elasticities. The result is that renewals 
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cost elasticities have to be inferred from models based on maintenance and renewals 

combined, and there is therefore currently much uncertainty over the range of appropriate 

values that should be used. Our paper is therefore the first paper in the literature that we are 

aware of to report usage elasticities specifically for renewals costs (in our case, track renewal 

costs). 

 

Table 7. Studies on railway infrastructure renewal costs 

Study Data Cost category Average  

elasticity* 

This paper 

 

 

Track section level 

Sweden 

1999 – 2009 

Renewals only 

 

 

0.55 

 

 

Andersson (2006) 

 

 

Track section level 

Sweden 

1999 – 2002 

Maintenance and  

Renewals 

 

0.26 

 

 

Marti et al. (2009) 

 

 

Track section level 

Switzerland 

2003 – 2007 

Maintenance and  

Renewals 

 

0.28 

 

 

Wheat and Smith (2009) 

 

 

Maintenance delivery unit level 

Great Britain 

2006  

Maintenance and  

Track renewals 

 

0.49 

 

 

Smith et al. (2008) 

 

 

Regional level 

5 European countries 

2002-2006 

Maintenance and  

Track renewals 

 

0.43-0.44 

 

 

Smith (2008) 

 

 

National level 

13 European countries 

1996 – 2006  

Maintenance and 

Renewals 

 

0.48-0.51 

 

 

Wheat et al. (2009) A range of country case studies Maintenance only 0.20-0.35 

Andersson (2007b) 

 

 

Track segment level 

Sweden 

1999 – 2005 

Renewals only 

 

 

-0.1** 

 

 

* Elasticity of cost w.r.t. traffic volume; ** Elasticity of expected life time w.r.t. traffic volume 

Nevertheless, it is interesting to consider how our results compare against previous 

work. Given difference in network quality between countries resulting in substantial 

differences in average cost, Wheat et. al. (2009) recommend that generalisation from one 

study to other networks should be based on elasticities. As noted, the majority of the studies 

reported in Table 6 cover both maintenance and renewals (M&R) cost, and we would thus 

expect our results to have a higher elasticity than in those studies based on engineering 

evidence. The reported elasticity of 0.55 from our preferred model does indeed lie above the 

top of the range of previous estimates for maintenance and renewals. It should be noted, 

however, that the high M&R elasticities in Table 7 derive from the results of more aggregated 

data (national, regional or maintenance delivery unit), whereas Andersson (2006) and Marti 

et al. (2009) report much lower elasticities using disaggregate (track section) data more 

similar in nature to the data set used in the present study.  
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Overall, we conclude that our results make sense in the context of previous work, 

though the different cost categories used make a more in-depth comparison problematic. 

Importantly, by presenting the first renewals-only study, we consider that we have added new 

clarity to the literature, and indeed increased certainty regarding the elasticity of renewal 

costs with respect to traffic (at least for track renewals). 

The average marginal cost per gross tonne-km is estimated to be approximately SEK 

0.009 or €c 0.10. Marginal cost estimates are either not reported in the other previous 

studies shown in Table 6, or are non-comparable since they are based different cost bases 

(i.e. they include maintenance); and as noted above, generalisation from one country to 

another should proceed based on elasticities rather than marginal costs in any case. Turning 

to the evidence in respect of Sweden, our estimates are higher than previously found in 

Andersson (2007b), using survival analysis and a unit cost for track renewal, specifically rail 

replacements. We expect the present estimates to be higher as they cover a larger track 

renewal cost share. Since the current pricing scheme in Sweden only covers the marginal 

infrastructure cost for maintenance activities, the inclusion of our estimate of marginal 

infrastructure renewal costs would add substantially to the current track charge, which is SEK 

0.0036 per gross tonne-km.  

Of course, if the track access charges in Sweden are to be made truly cost reflective, 

as required by EU legislation, then marginal renewal costs should be incorporated into 

current charging structures. Given the evidence provided by this paper, the inclusion of 

marginal renewal cost would lead to an increase in charges of approximately 250 per cent. 

This paper presents some initial efforts at disaggregate modelling of track renewal 

costs. A key development would be the incorporation of cumulative tonnage into the analysis. 

Cumulative tonnage is considered a key for renewal decisions in the rail technology 

literature, but this type of data is normally not available. If it is not available, then decisions 

will have to follow some other heuristic. In this paper, we have attempted to model renewal 

costs using annual tonnage measures on the right hand side of the model, together with 

capability, condition and age measures. Whilst a robust measure of cumulative tonnage is 

not yet available in Sweden, this could be a realistic possibility with additional data collection 

and analysis in the future.  
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