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Abstract 
In this paper, dynamic aspects of railway infrastructure operation and maintenance costs in 
Sweden are explored. Econometric cost functions are estimated to check the robustness of 
previous marginal cost estimates by introducing lags and leads of both dependent and 
independent variables. We find support for a forward-looking behaviour within the Swedish 
National Rail Administration (Banverket) as both infrastructure operation and maintenance 
costs are reduced prior to a major renewal. There are also indications of both lagged traffic 
and costs affecting the cost structure, but these results are more uncertain due to limitations 
in data. 
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1. Introduction 

Marginal cost estimation of railway infrastructure wear and tear is an important task in the 

light of the European railway policy. Andersson (2006, 2007a, 2007b) estimates the marginal 

cost of wear and tear in Sweden using pooled ordinary least squares (POLS), fixed effects 

(FE) and survival analysis (SA). Although these models all include a variety of traffic and 

infrastructure variables, they exclude dynamic aspects on the cost structure i.e. they ignore 

the possibility of the cost level in time t to be affected by costs or other aspects in other time 

periods, t ± m.  

The purpose of this paper is to extend the work in Andersson (2006, 2007a) by introducing 

lags and leads of dependent and independent variables as an explanation for railway 

infrastructure costs in Sweden. We make use of both static and dynamic panel data models 

mailto:mats.andersson@vti.se


when exploring potential dynamic effects. This provides an indication of how robust previous 

elasticity and marginal cost estimates are. 

The outline of the paper is as follows. Section 2 makes a brief review of previous work in this 

field followed by a description of our data in section 3. Hypothesis of dynamics are explored 

in section 4. The econometric models and associated results are presented in section 5, and 

we discuss the results and draw conclusions in section 6. 

 

2. Literature review 

This paper builds on recent work on the cost structure of vertically separated railway 

organisations. There has been increasing activity in the field of marginal railway cost 

estimation in Europe during the last decade (Link and Nilsson, 2005). This has grown out of a 

sequel of projects funded by the European Commission in line with the European railway 

policy (European Parliament, 2001). The work so far has been devoted to setting the 

framework for transport system pricing (Nash and Sansom, 2001), linking cost accounts in 

member states to match the needs of marginal cost estimation (Nash, 2003), finding best 

practices in member states (Thomas et al., 2003) and disseminating findings (Nash and 

Matthews, 2005). Still, there is only a limited number of empirical studies undertaken related 

to marginal railway infrastructure costs using micro-level data (Lindberg, 2006).   

The paper that initiated both recent and current research is Johansson and Nilsson (2004)1. 

They estimate cost functions on data from Sweden ranging from 1994 to 1996, and from 

Finland between 1997 and 1999. Johansson and Nilsson (2004) apply the method of pooled 

ordinary least squares (POLS) in their analysis. Pooling the annual data and using a restricted 

version of the Translog specification by Christensen et al. (1973), they derive cost elasticities 

                                                 
1 The work by Johansson and Nilsson was done in the late 1990’s and the working paper that circulated then 

initiated the following studies, although the journal article was published in 2004. 
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with respect to output and associated marginal costs. The approach by Johansson and Nilsson 

(2004) to use infrastructure costs as dependent variable, and traffic variables as well as 

infrastructure standard as independent variables is used in most research recently (Munduch 

et al., 2002; Daljord, 2003; Tervonen and Idström, 2004; Andersson, 2006; Marti and 

Neuenschwander, 2006; Smith and Wheat, 2006)2. Traffic volumes in terms of gross tonnes 

and trains are considered as outputs of the track, and costs are assumed to be minimised for a 

given level of output. 

Munduch et al. (2002) use 220 annual observations from the Austrian Railways between 

1998 and 2000. The data consists of track maintenance costs, traffic volumes in gross tonnes, 

and a rich set of infrastructure variables. Pooled estimates are compared to annual estimates 

and tests favour the former. They also test for and reject the use of tonne kilometres as 

output, and suggest tonnes and track kilometres as separate variables. 

Daljord (2003) estimates Cobb-Douglas and Translog functions on Norwegian maintenance 

cost data from 1999 to 2001, but he is heavily restricted in his analysis by data availability. 

The Translog specification is rejected on the grounds of theoretically un-sound predictions in 

favour of the Cobb-Douglas. He concludes that there is a need for a dedicated data collection 

strategy in Norway to come to terms with the evident problems in the data used.  

Tervonen and Idström (2004) analyse the cost structure of the Finnish railway network with 

data from 2000 to 2002, using a Cobb-Douglas function. They differ in their approach by a 

priori identifying fixed and variable cost groups, and only analysing variable costs. The 

analysis is based on maintenance costs as well as an aggregate of maintenance and renewal. 

Their main conclusion is that marginal costs have decreased compared to analyses undertaken 

                                                 
2 The reason Johansson and Nilsson put forward in favour of excluding factor prices is the harmonisation of 

prices through a highly regulated labour market. Track sections are assumed to have a similar price structure 
when compared to each other. 
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on data from 1997 to 1999, but the reduction might come from inconsistencies in the cost 

accounts.  

Andersson (2006) updates the estimates by Johansson and Nilsson (2004) with data from 

1999 to 2002 and finds that a separation of maintenance and infrastructure operation costs is 

warranted as the latter is driven by trains rather than gross tonnes3. The new data set also 

includes renewal costs, and models are estimated for maintenance only as well as an 

aggregate of maintenance and renewal.  

Marti and Neuenschwander (2006) estimate a POLS model for maintenance cost data on the 

Swiss national network during 2003-2005. A rich set of infrastructure variables and traffic is 

used to explain cost variation.  

While the studies above make use of micro-level data (track sections), the study by Smith and 

Wheat (2006) use data from 53 maintenance delivery units for the Great British Network in 

2005/06 and apply OLS. They find somewhat higher elasticities than the other studies. 

Considering the variation between the individual studies, the results have been reasonably 

similar in terms of cost elasticities with respect to (wrt) output, when controlling for the cost 

base included (Wheat, 2007). There seems to be evidence for the maintenance cost elasticity 

wrt output of gross tonnes to be in the range of 0.2 - 0.3, i.e. a 10 percent change in output 

gives rise to a 2-3 percent change in maintenance costs. 

Lately, there has been some alternative econometric approaches to the one suggested by 

Johansson and Nilsson (2004). Gaudry and Quinet (2003) use a very large data set for French 

railways in 1999, and explore a variety of unrestricted generalised Box-Cox models to 

allocate maintenance costs to different traffic classes. They reject the Translog specification 

as being too restrictive on their data set. Andersson (2007a) estimates infrastructure operation 
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and maintenance cost models with fixed effects and rejects the pooled OLS approach. He 

finds significant heterogeneity in the data and estimates marginal maintenance costs twice as 

high as previous estimates in Andersson (2006) using POLS. 

Based on discussions with staff at the Swedish National Rail Administration (Banverket), we 

have reason to believe that the cost structure have a dynamic structure, which could affect the 

previously estimated models. We explore some dynamic hypotheses in section 4, but first 

take a brief look at the data at hand. 

 

3. Data 

A panel (a combination of cross-sectional and time-series data) of track section data with 

cost, infrastructure and traffic information on the Swedish railway network over 1999-2002 

will be analysed. This data has previously been used in Andersson (2006, 2007a) for cost 

function estimations, but is for this study extended to include renewal costs in 2003 and 2004. 

The analysis will be on the main part of the data set, 1999-2002, which are the only years for 

which we can observe traffic and infrastructure covariates. Extending the data with renewal 

costs for following years, implicitly assumes that the main characteristics of the track sections 

have been unchanged up to 2004. This assumption may not be too restrictive since the 

development of a railway network is a slow process. Andersson (2007a) estimated 

infrastructure characteristics as a fixed effect for 1999-2002; a decision based on the idea that 

within-track section variation is very small or non-existing for observed infrastructure 

variables.  

 

                                                                                                                                                        
3 Infrastructure operation was chosen in Andersson (2006) as the terminology used for short-term maintenance 

which is dominated by winter maintenance such as de-icing and snow removal. For consistency we will keep 
this definition. 
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The traffic data comprises gross tonne volumes and number of trains per track section, which 

are observed between 1999 and 2002. 

 

4. Hypotheses of dynamics 

There are some a priori hypotheses for believing that there might be underlying dynamic 

effects in our data, and a variety of model specifications are used in order to test these 

hypotheses. Models with lags and leads of both dependent and independent variables are 

explored; hence different models are used for different questions posed. 

The first hypothesis is that infrastructure operation and maintenance costs in time t depend 

not only on covariates in time t, but also on whether a major renewal is being planned in 1+t  

or . This forward-looking behaviour could be part of a cost-minimising strategy, which 

includes reducing infrastructure and maintenance costs as the time of a track renewal is 

approached. Reducing maintenance costs could eventually lead to increased track degradation 

and derailment risks, but common knowledge within track managers’ circles is that this 

strategy is safe to run for a few years. Thus, the hypothesis is that future renewal costs will 

lead current infrastructure operation and maintenance costs. Dummy variables for major 

renewals, , are generated based on a comparison of annual maintenance costs in t, , 

and annual renewals in  ( ), , and 

2+t
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A negative relationship between maintenance costs in t and major renewals in  and 1+t 2+t  

is expected, but there are uncertainties a priori about what effect this forward-looking 

behaviour will have on infrastructure operation costs, if any. Apart from winter maintenance, 

infrastructure operation involves short-term maintenance, which one can suspect either to 

increase or decrease as a reaction to reduced maintenance. A carefully planned reduction in 

maintenance will open up for a parallel reduction in infrastructure operation costs, but if the 

maintenance reduction is taken too far we might also observe increased infrastructure 

operation costs as a backlash. 

This analysis poses no specific problems related to the econometric model specification. The 

dummy variables for renewals are exogenous variables and this model can be estimated using 

a fixed effects estimator as in Andersson (2007a). 

  

TtNiy itiitit  ..., 2, 1,                ..., 2, 1,               , ==+′+′= εαzβx   (2) 

 

y is our dependent variable, x is a vector of explanatory variables, z is a vector that captures 

observed or unobserved heterogeneity and ε is the error term. If  in (2) contains an 

unobserved effect that is correlated with , we can use an individual specific constant, 

iz

itx iα , 

as in expression (3) to get unbiased and consistent estimates of all model parameters. See 

Wooldridge (2002) or Greene (2003) for an exhaustive presentation of fixed effects 

estimation. 

 

TtNiy ititiit  ..., 2, 1,                ..., 2, 1,               , ==+′+= εα βx  (3) 
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The second hypothesis is that maintenance costs in t might be affected by traffic not only in t, 

but also in t - 1. Hence, we assume that there is some reaction time for actions in response to 

observed traffic levels. The short time panel available is a restriction and the analysis is 

therefore limited to a one-year lag structure. A variety of specifications for maintenance costs 

will be investigated. This hypothesis will also be analysed using the fixed effect model in (3), 

but is not applied to infrastructure operation costs, as it is hard to justify such a dynamic 

relationship for short-term and winter maintenance. 

The third hypothesis is linked to the nature of maintenance itself. Some maintenance 

activities are not needed on an annual basis, which means that there will be fluctuations in 

maintenance costs between years, even if traffic volumes are constant. If too little is spent on 

maintenance one year it will come out as a need to spend more the coming year. This cyclic 

behaviour will continue in order to keep the railway track in a steady-state condition over 

time. If this hypothesis holds, costs in year t depend on costs in year 1−t , and exploring a lag 

structure of the dependent variable is warranted. For this type of cyclic fluctuations, we 

expect a negative coefficient for the lagged variable, and for the process to be stationary the 

estimated coefficient has to be between -1 and 0 (Vandaele, 1983). The size of the coefficient 

signals the importance of historical maintenance. The further away from 0, the more 

important is the history. A positive estimate indicates a trend in costs over time, while a 

negative estimate shows that the cost is oscillating around some mean value over time. Once 

again, this hypothesis is not applied to infrastructure operation costs. 

The third hypothesis introduces special problems with autocorrelation between the error term 

and the lagged dependent variable through the group specific effect, but Arellano and Bond 

(1991) suggested a generalised method of moments (GMM) estimator for this type of 

problem, which involves taking first differences of the model to sweep away heterogeneity in 

the data.  
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Consider a model where a dynamic relationship in y is captured through a lagged dependent 

variable as a regressor (4), 

 

TtNiyy itititit  ..., 2, 1,                ..., 2, 1,               ,1 ==+′+= − εδ βx  (4) 

 

where δ and β are parameters to be estimated, xit is a vector of explanatory variables for 

observation i in time t, is a vector . Assume that the error term εit follows a one-way error 

component model itiit νµε +=  where µi is IID (0, ) andν2
µσ it is IID (0, ) independent of 

each other and among themselves. 

2
νσ

This model will include two effects that persist over time, autocorrelation from using a 

lagged dependent variable and heterogeneity from the individual effect µi. Autocorrelation 

comes from yit being a function of µi and subsequently yit-1 also being a function of µi. 

Therefore, the regressor yit-1 in (4) is correlated with the error term εit. This will make an OLS 

regression biased and inconsistent. Furthermore, Baltagi (2005) shows that both standard FE 

and RE estimation of expression (4) will be biased, but a solution proposed to these problems 

is first-differencing, which will wipe out the individual effect and using lagged instruments to 

handle the autocorrelation. An instrument is a variable that does not itself belong to the 

regression, that is correlated with yit-1, and that is uncorrelated with εit. 

Arellano and Bond’s (1991) dynamic panel data estimator does exactly the above, but also 

use the orthogonality between lagged values of yit and νit to create additional instruments. 

A simple autoregressive version of (4) with the same error structure, but without regressors, 

is given in (5).  
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TtNiyy ititit  ..., 2, 1,                ..., 2, 1,               ,1 ==+= − εδ  (5) 

 

To consistently estimate δ, take first differences of (5) to eliminate the individual effect µi, 

which will make the second term on the right-hand side equal to zero. 

 

)()()()( 1

0

211 −−−− −+−+−=− ititiiitititit yyyy ννµµδ
48476

 (6) 

 

In order to find valid instruments to the lagged differenced regressor (that are uncorrelated 

with the differenced error term), T ≥ 3 is needed. T = 3 gives the following model (7), 

 

)()()( 231223 iiiiii yyyy ννδ −+−=− . (7) 

 

1iy  is highly correlated with )( 12 ii yy −  and a valid instrument, but at the same time 

uncorrelated with )( 23 ii νν − . If T is extended, the list of instruments is extended. With T = 4, 

both  and  are valid instruments to the regressor 1iy 2iy )( 23 ii yy −  and one can go on like 

this by adding more instruments as T increases. 

If we add other regressors ( ) that are correlated with the individual effect to the Arellano 

and Bond model, then these can also be used as instruments if they are strictly exogenous 

with 

itx

. , ... 2, 1,  ,  0) ( TstE isit =∀=εx  This approach can also be adjusted if some or all 

instruments are considered predetermined otherwise zero and ,  for  0) ( stE isit <≠εx  (see 

chapter 8 in Baltagi, 2005 for further details). 
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5. Model specifications and estimation results 

The hypotheses presented in section 4 are incorporated into econometric models that can be 

estimated using either static or dynamic panel data estimators. Models and results for 

infrastructure operation are presented in section 5.1, and for maintenance in section 5.2. All 

model estimations are done using Stata 9.2 (StataCorp, 2005) and costs are expressed in 2002 

real prices. 

 

5.1 Infrastructure operation costs 

In this sub-section, a model for infrastructure operation costs in the presence of renewal leads 

is explored. This model is an extension of the suggested model in Andersson (2007a) and 

fixed effects at track section level are assumed. 

Model 1 is for infrastructure operation costs using a third-degree polynomial for the natural 

logarithm of trains (TT) and dummy variables for future renewals ( ). A model with 

dummy variables for renewals in both t+1 and t+2 has been tested, but the coefficient for the 

renewal in t+2 is insignificant. Based on Akaike’s Information Criterion (AIC), the 

specification with two dummy variables is rejected in favour of a reduced model given in 

expression (8). Fixed effects (FE) at track section level are captured in 

R
mitD ,

iα , and itε  is the 

homoscedastic error term with zero mean. The estimates of the reduced model are given in 

table 1. 

 

it
R
ititititi

O
it DTTTTTTC εφβββα +++++= 1,1

3
3

2
21 )(ln)(lnlnln  (8) 
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Table 1. Results from a FE model for infrastructure  
operation costs with renewal dummy - Model 1 
Variable Coefficient  (Robust S.E.) 
ln TT 5.918566†     (2.301833) 
(ln TT)2 -0.964338‡     (0.303361) 
(ln TT)3 0.046002‡     (0.013077) 
Renewalt+1 -0.181635†     (0.090712) 
Number of observations = 749 Number of groups = 190 
F (4, 555) = 5.10 Prob > F = 0.0005 
Correlation between unobserved  
effect and included covariates = -0.60 
σα = 1.828               σε = 0.634               ρ = 0.89 
Legend: ‡ Significant at 1% level; † Significant at 5% level; * Significant at 10% level.  
 

The overall model is significant at the 1 percent level based on the F test. There is a strong 

correlation between the unobserved effect and our included covariates (-0.6). The importance 

of the unobserved fixed effect can be measured as  (Wooldridge, 2002). ρ 

is estimated to 0.89, i.e. almost 90 per cent of the variation is contributed to the variation in 

our unobserved effect. We also reject the model in Andersson (2007a) based on the AIC. 

)/( 222
εεα σσσρ +=

The calculation of individual cost elasticities is based on expression (9), which is the 

derivative of the estimated cost function with respect to the output variable4. The standard 

error of the elasticity is computed using the Delta method (Greene, 2003, Appendix D.2.7). 

 

))(lnˆ3()lnˆ2(ˆˆ 2
321 itit

O
it TTTT ⋅⋅+⋅⋅+= βββγ  (9) 

 

The point estimate of the output elasticity is negative at -0.017 (standard error 0.19), but if we 

look at individual estimates, they range from negative to positive (figure 1). 

 

                                                 
4 This follows from the model specification using the logarithm of costs as dependent variable and logarithm of 

output as independent variable, also known as a log-log, double-log or log-linear model (Gujarati, 1995). 
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Figure 1. Infrastructure operation cost elasticity wrt output – Model 1 

 

In fact, low volume tracks have negative elasticities, but at 12,000 trains per year (an average 

of close to 33 trains per day) the sign shifts from negative to positive. This means that trains 

contribute positively to winter maintenance up to a certain level, but this positive effect is 

exhausted as volumes exceed this threshold. This finding is in line with Andersson (2007a) 

and a commonly held view in the Swedish railway industry, that trains help to sweep the 

snow of the track. Furthermore, the elasticity exceeds 1 as output volumes approaches 40,000 

trains per year, i.e. we turn from economies to diseconomies of density (Caves et al., 1985). 

At high volumes costs increase more than proportionally to the number of trains.  

The coefficient for future renewals on infrastructure operation costs is -0.182 and significant 

at the 5 percent level.  Since it is a dummy variable, the elasticity is calculated as . 

Hence, the effect from a renewal in t+1 is an infrastructure operation cost reduction by 17 

percent in t (standard error 0.027). There is no evidence of increased infrastructure operation 

costs as a consequence of future renewals, but this has to be judged in the light of the 

estimates in our maintenance cost models in the next section. 

1)ˆexp( 1 −φ
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Average costs are calculated using expression (10), which is predicted costs divided by 

output kilometres at track section level. Marginal costs are calculated as the product between 

the output elasticity and the average cost (11). 

 

it

O
itO

it TKM
CAC
ˆ

=  (10) 

 

O
it

O
it

O
it ACMC ⋅= γ̂  (11) 

 

The mean of the average cost is SEK 7.26 (standard error 1.250) per train kilometre, while 

the mean of the marginal cost is negative at SEK -3.40 (standard error 0.940)5. This stems 

from high average costs and negative elasticities on track sections with low volumes that 

contribute heavily to the point estimate. 

The calculated marginal costs from (11) are observation specific. If we adjust the marginal 

cost and estimate a mean value taking individual traffic levels into account, we get a 

weighted marginal cost for the entire network based on the traffic share per track section as in 

(12). 

 

∑ ∑ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=

it
it it

itO
it

O
W TKM

TKMMCMC  (12) 

 

The weighted point estimate is SEK 0.121 (standard error 0.080) per train kilometre, but 

insignificantly different from zero at the 10 percent level.  

                                                 
5 The exchange rate from Swedish Kronor (SEK) to Euro (EUR) is SEK 9.32/EUR and from Swedish Kronor to US 

Dollar (USD) is SEK 6.89/USD (August 20, 2007). 
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5.2 Maintenance costs 

In this sub-section, models for maintenance costs are explored. Firstly, the effect on 

maintenance costs from future renewals is analysed. Secondly, we introduce lagged traffic 

variables and thirdly, add a lagged dependent variable to the model. 

 

Maintenance costs and future renewals - Model 2 

In a similar fashion as for infrastructure operation costs, a logarithmic model for maintenance 

costs (CM) is specified in expression (13), using total gross tonnes (TGT) as output variable. 

Rail age is also added to the model. The reason for this is that we cannot argue for rail age to 

be included in the time-invariant, group specific fixed effect for each track section as it 

changes over time per definition6. The third-degree polynomial specified in Andersson 

(2007a) remains valid when adding both dummy variables for future renewals. Estimates are 

given in table 2. 

 

it
R
it

R
itit

itititi
M
it

DDRailAge

TGTTGTTGTC

εφφβ

βββα

+++

++++=

2,21,11

3
3

2
21

ln

)(ln)(lnlnln
 (13) 

 

The estimated coefficients have expected signs and are significant at the 5 per cent level 

(except the squared term with a prob. value of exactly 0.05). Both coefficients for the dummy 

variables for future renewals are significant at the 1 percent level, with coefficients just below 

-0.13 or in elasticity terms -0.12. Maintenance costs are reduced by approximately 12 percent 

per year when a renewal is planned within any of the coming two years. 

 

                                                 
6 Rail age was not included in the model for infrastructure operation costs on the assumption that short-term and 

winter maintenance is unaffected by age. 
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Table 2. Results from a FE model for infrastructure maintenance costs  
and renewal dummies - Model 2 
Variable Coefficient  (Robust S.E.) 
ln TGT 7.184414†     (3.636894) 
(ln TGT)2 -0.547177*     (0.278821) 
(ln TGT)3 0.013869†     (0.006992) 
ln Rail age 0.144854†     (0.064431) 
Renewal t+1 -0.129461‡     (0.037926) 
Renewalt+2 -0.125880‡     (0.042143) 
Number of observations = 749 Number of groups = 190 
F (6, 553) = 5.36 Prob > F = 0.0000 
Correlation between unobserved  
effect and included covariates = 0.16 
σα = 0.931               σε = 0.346               ρ = 0.88 
Legend: ‡ Significant at 1% level; † Significant at 5% level; * Significant at 10% level. 
 

The mean cost elasticity with respect to output is estimated to 0.23 although only 

significantly positive at the 10 percent level (standard error 0.13). A plot of predicted 

elasticities is given in figure 2.  
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Figure 2. Infrastructure maintenance cost elasticity wrt output – Model 2 

 

Average costs, marginal costs and weighted marginal costs are calculated using expressions 

(10) – (12) with gross tonne kilometres used as output. The average cost per gross tonne 
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kilometre is SEK 0.09 and marginal cost SEK 0.014. The weighted marginal cost is estimated 

to SEK 0.0063 per gross tonne kilometre (standard error 0.00044). 

 

Maintenance costs and lagged traffic - Model 3 

The second model for maintenance analyses the effect of using lagged output as a covariate 

(14). We have also tried a model using both traffic volume in t and t-1, but the strong 

correlation between traffic over time forced traffic in t out of the model.  
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The third-degree polynomial for output used in Model 2 above is reduced to a second-degree, 

but all other variables remain in the model. One year of observations is lost when introducing 

lagged output to the model, and the sample size is reduced to 559 observations. The model 

results are given in table 3. 

The F test indicates that we have a significant model and all coefficients have expected signs. 

The mean output elasticity is substantially higher than in Model 2 (0.629) and significantly 

above zero at the 1 percent level. The elasticities for future renewals are just a fraction lower 

than the estimates in Model 2. Model 3 estimates are -0.15 and -0.18 for t+1 and t+2 

respectively, both significantly below zero at the 1 percent level. The output elasticity is 

increasing at a decreasing rate (figure 3), and exceeds 1 around 20 million gross tonnes per 

year. The economies of density are then exhausted. 
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Table 3. Results from a FE model for infrastructure maintenance costs,  
lagged traffic variables and renewal dummies - Model 3 
Variable Coefficient  (Robust S.E.) 
ln TGTt-1 -2.460353‡     (0.974259) 
(ln TGTt-1)2 0.103196‡     (0.034956) 
ln Rail age 0.257608†     (0.125642) 
Renewalt+1 -0.158292‡     (0.044992) 
Renewalt+2 -0.195988‡     (0.054259) 
Number of observations = 559 Number of groups = 188 
F (5, 366) = 9.40 Prob > F = 0.0000 
Correlation between unobserved  
effect and included covariates = -0.38 
σα = 0.981               σε = 0.360               ρ = 0.88 
Legend: ‡ Significant at 1% level; † Significant at 5% level; * Significant at 10% level. 
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Figure 3. Infrastructure maintenance cost elasticity wrt output – Model 3 
 

Following the increase in output elasticity, marginal cost estimates are much higher in this 

model, with a weighted estimate at SEK 0.016 (standard error 0.0009) per gross tonne 

kilometre. This is more than twice as high as the estimate in Model 2. 

 

Maintenance costs and lagged costs - Model 4 

The final model deals with the possibility of maintenance costs in t-1 affecting costs in t. The 

relatively short panel means that using a dynamic panel data specification for data from 1999 
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to 2002 will result in losing two full years of observations. The final sample consists of 371 

observations.  

There is a risk of an over-identified specification when using the Arellano and Bond 

estimator, i.e. the number of instruments exceeds the included regressors.  Testing for over-

identifying restrictions is a way of controlling the validity of the included instruments. There 

is though a possibility that a rejection of the instruments comes from violating the conditions 

of homoscedasticity, rather than weak instruments. A solution is then to use a two-step 

estimator (StataCorp, 2005) for model validation, but a one-step estimator for parameter 

inference. Furthermore, second-order autocorrelation in the residuals would lead to 

inconsistent estimates and needs to be tested for too. 

The suggested model is given in (15) and builds on Model 3. The difference is the inclusion 

of lagged costs as an explanatory variable and a dummy for 2002 to pick up systematic 

differences between 2002 and 2001. Results from both one-step (Model 4a) and two-step 

(Model 4b) estimations are given in table 4. 
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We do not reject the null hypothesis of no first-order autocorrelation in the differenced 

residuals in either Model 4a or 4b. The short panel makes the test for second-order 

autocorrelation impossible to perform as the residuals in t and t-2 have no observations in 

common. 

Using the Sargan test for over-identifying restrictions, we cannot reject the null hypothesis 

that the instruments are valid based on Model 4b. In Model 4a we reject the validity of the 

instruments. Overall, the coefficients do not change dramatically between the model 
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alternatives. Still, inference on individual coefficients is based on Model 4a as suggested by 

StataCorp (2005). 

 

Table 4. Results from 1-step and 2-step Arellano & Bond dynamic panel data  
estimators for infrastructure maintenance costs - Model 4a and 4b 
Variable Arellano & Bond 1-step 

Coeff.                   (S.E.) 
Arellano & Bond 2-step 
Coeff.                   (S.E.) 

ln CMt-1 -0.558435‡  (0.163820) -0.615749‡  (0.203364) 
ln TGTt-1 -1.485938†  (0.663649) -1.625028‡  (0.570388) 
(ln TGTt-1)2 0.059787†  (0.026546) 0.063149‡  (0.023793) 
ln Rail age 0.087277    (0.105464) 0.084911    (0.090911) 
Year 2002 0.244428‡  (0.055466) 0.215424†  (0.045803) 
Renewalt+1 -0.110589*  (0.060079) -0.100959‡  (0.045731) 
Renewalt+2 -0.137055†  (0.059185) -0.135058‡  (0.048814) 
Observations 371 371 
Groups 186 186 
Wald χ2 (7 df) 68.45 66.18 
Sargan’s χ2 (2 df) 9.65;  p > χ2 = 0.008 3.44; p > χ2 = 0.179 
Autocov. Order 1 -0.89;   p > z  = 0.373 -0.52; p > z  = 0.604 
Autocov. Order 2 - - 
Legend: ‡ Significant at 1% level; † Significant at 5% level; * Significant at 10% level.  
 

The coefficient for our lagged cost variable is negative and significant from zero at the 1 

percent level in the one-step model. We notice a strong negative relationship between the 

first-difference in costs between t-1 and t. A 10 percent increase in the difference of 

maintenance costs in t-1 generates a 5.5 percent cost reduction in t. This supports the 

hypothesis that costs are oscillating around a mean over time to keep the track in steady-state. 

Since the estimate of 11 <β , we have a stationary process (Vandaele, 1983). 

The dynamic model gives us the possibility to calculate both short-run and long-run cost 

elasticities wrt output. The short-run elasticity is calculated as in the previous sections, but 

the formula for the long-run elasticity is slightly different. Based on our specification in (15), 

expression (16) gives us the long-run elasticity for infrastructure maintenance costs with 

respect to gross tonnes, with  being the estimated coefficient for our lagged dependent 1̂β
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variable, and  and  our estimated output coefficients. The coefficient for our lagged 

dependent variable simply works as a scale factor between short-run and long-run effects. 

2β̂ 3β̂

  

[ 2
132
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)(lnˆ2ˆ
)ˆ1(

1ˆ −⋅⋅+⋅
−

= it
M
LR TGTββ
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The second factor in the expression is equivalent to what we used in our analysis of lagged 

independent variables above. This is the short-run effect, or the short-run elasticity. The point 

estimate is calculated to 0.31 (standard error 0.192), but insignificantly different from zero, 

even at the 10 percent level. The long-run elasticity is lower due to the negative sign of the 

coefficient of our lagged dependent variable. A traditional definition of short-run and long-

run cost elasticities is that in the short-run, the production technology is given, while in the 

long-run it is not. In our case, long-run is rather the effect from including the level of 

maintenance undertaken in a previous time period. A marginal change in traffic in t-1 will 

affect the level of maintenance in t-1, which in turn will affect the level of maintenance in t. 

This combined effect is captured in our long-run estimate. 

 

The point estimate of the long-run elasticity is 0.20 (standard error 0.128), but also 

insignificant from zero at the 10 percent level. Predicted elasticities are given in figure 4. 

To predict costs and calculate marginal costs from Model 5a, we need to look at the actual 

model that is estimated. 
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Figure 4. Long-run infrastructure maintenance cost elasticity wrt output – Model 4a 
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Rearranging (17) to get on the left-hand side and replacing  with our estimated 

coefficient, gives (18), which is used for prediction. 

M
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The section left out is simply the first-differences of our included variables multiplied with 

our estimated coefficients.  

The estimated, weighted short-run marginal cost is SEK 0.0084 (standard error 0.00058) per 

gross tonne kilometre, which is 30 percent higher than in Model 2. The long-run estimate on 

the other hand is SEK 0.0054 (standard error 0.00037) per gross tonne-kilometre, which is 15 

percent below the Model 2 estimate. 
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6. Discussion and conclusions 

In this paper we have estimated econometric models for railway infrastructure costs in 

Sweden and tested the robustness of previous marginal cost estimates by introducing both 

lags and leads of dependent and independent variables in our cost functions. The general 

finding is that there seem to be dynamic characteristics that affect the cost structure of the 

Swedish railway network, but the available panel is too short to draw any strong conclusions.  

The first analysis concerns the effect on costs from planned future renewals and we find that 

both infrastructure operation and maintenance costs are reduced a couple of years prior to a 

large renewal. This confirms a forward-looking management strategy followed by Banverket, 

which is aiming at track maintenance cost minimisation. The effect that this has on our 

previous marginal cost estimates is not so large, but it is a dimension that needs to be taken 

into account in future modelling of railway infrastructure costs in Sweden and possibly other 

countries as well. A subsequent analysis to this would be to study if quality, measured as train 

delays and speed restrictions, can be maintained for train operators when costs are reduced 

for a limited time period. 

The second analysis deals with the potential time delay between observed traffic volumes and 

maintenance activities. When introducing a one-year lag structure in our explanatory output 

variables, we experience the main problem of this dynamic analysis in the form of 

substantially different elasticities and marginal cost estimates compared to the previously 

used static models. We lose a full year of observations, which in this case is around 25 

percent of the data. The model picks up a relationship between traffic in t and t-1, but it is 

difficult to draw any firm conclusions from this. The reason is the high correlation between 

traffic in t and t-1. The fact that traffic in t becomes insignificant in the model, when traffic in 

t-1 is included, tells us something, but it is impossible to separate the dynamic hypothesis 
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from the effect from the reduced sample. A longer time-series for each track section (a wider 

panel) is needed for this analysis to be more reliable. 

The final analysis focuses on lagged maintenance costs and once again we can see that the 

short panel is a problem. It is possible to estimate a dynamic panel data model for 

maintenance costs, but the available instruments are not so strong. Still, the short-run and 

long-run marginal cost estimates are not too far away from what is estimated in Andersson 

(2007a), or from the estimates in Model 2, which included the dummy variables for future 

renewals. We find support for a stationary cyclic spending pattern for maintenance, with a 

negative first-order autoregressive coefficient of -0.56. This is plausible as maintenance in t-1 

can have a cost reducing effect on maintenance in t. It also shows that maintenance costs are 

kept around some level that keeps the track in steady-state. A wider panel could also solve 

some of the problems in this analysis and it is recommended for future research to try to 

extend the time window.  

From the three analyses, the recommendation is to look closer at the results from Model 2; 

the inclusion of dummy variables for future renewals. This analysis indicates that the 

marginal cost for infrastructure operation costs is around SEK 0.12 per train kilometre as a 

weighted average. The equivalence for maintenance costs is SEK 0.0063 per gross tonne 

kilometre, which is twice as high as the current track charge for infrastructure wear and tear 

in Sweden; SEK 0.0029 per gross tonne kilometre (Banverket, 2006). There is no charge 

currently for infrastructure operation costs. Model 2 estimates are also in line with previous 

fixed effect estimates by Andersson (2007a). It seems like an application of marginal cost 

pricing would move the track charge in an upward direction. The other two analyses have 

promising features, and should be in focus for future research in this field.  

If we look at the potential for cost recovery, a constant challenge for the transportation 

industry (Button, 2005), the marginal cost estimates leave a large part of costs spent on the 
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railway track uncovered. Cost recovery is defined as the ratio between marginal and average 

costs. However, this calculation has to be done at the track section level rather than 

comparing the two mean estimates since we have a non-linear relationship between output 

and cost. 

Around SEK 1.3 billion is spent on railway maintenance every year in Sweden (Andersson, 

2006). Charging SEK 0.0063 per gross tonne kilometre on a total of some 60 billion gross 

tonne kilometres per year would generate an income of SEK 378 million. Thus, the cost 

recovery rate would be around 30 percent if we assume that there would be no effect on the 

demand for train operations from the price increase. This is significantly higher than the 

current cost recovery rate in Sweden, which is as low as 5 percent. Scandinavian countries 

are also considered having the lowest wear and tear charges in Europe, which can explain the 

current low rate (Nash, 2005). 

Our final conclusion is that dynamic aspects of rail infrastructure costs are important to 

explore further in the future, but such analyses require a data set that has a substantially 

longer time-frame in order to explore optimal lag structures of both dependent and 

independent variables. There is strong hope for improvements in that direction in Sweden as 

a new traffic data collection system has recently been implemented at Banverket. Combining 

this new information with both data that has been used in this study and data from the early 

1990’s, we might be able to generate a data set that covers some 15 years and open up for 

improved dynamic analyses.  
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