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ABSTRACT 

 In this paper we examine the stochastic properties that long term aggregate traffic 

demand exhibits. Based on the results of the time series analysis, we examine how 

fractionally integrated processes affect real option valuation in road projects. We 

conclude that the long memory property we find in long term aggregate traffic demand 

using Swedish data, implying that a shock in demand has persistent positive effects on 

future demand, leads to higher option values in road projects compared to the values 

from a standard model using geometric Brownian motion. 
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1 Introduction 

Investments in road network capacity are like all investments subjected to uncertain 

future developments and hence the theory of investment under uncertainty, the so-called 

real option analysis, should be applied in this area as well. Despite this fact, real options 

are seldom considered in societal cost benefit analysis of road projects. Real option 

analysis takes the impact of uncertainty on future decisions into account and thus helps 

us value the managerial flexibility of different alternatives. More specific, real option 

analysis considers the value of the opportunities that risk creates. A certain road may 

soon become obsolete because of unforeseen traffic increases. Choosing a flexible 

alternative from the beginning might provide us with the possibility of adapting the road 

at a low cost, thus softening the impact of uncertainty and prolonging the road’s 

economic lifespan. 

 Public investments in major infrastructure projects are dynamic in nature, and 

decision making must account for the uncertainty, irreversibility and potential for future 

learning. There are multiple sources of uncertainty, such as uncertainty with regard to 

traffic demand, deterioration and costs. However, cost estimates for standard road 

projects should be relatively certain, because they are mainly construction costs, which 

can be derived from previous experiences and secured by contractual arrangements. For 

non-standard road projects the opposite might be true, for example, the Swedish 

experiences with the ‘Hallandsåsen’-project. The problem was that the main real option 

was not seen or executed: the early abandonment of the project as information with 

regard to the true construction costs materialized. Flyvbjerg et al. (2003) find that there 

is a systematical underestimation of costs (and overestimation of benefits) for so-called 

mega-projects. However, for relatively standardized projects this might be less of a 

problem, and we do not attempt to perform a quantitative real option analysis of mega-
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projects. Still, we believe that real option analysis matters in planning mega-projects as 

well, but more on a conceptual level. Even if construction cost overruns are common, 

costs are relatively close in time compared to future traffic demand. Deterioration may 

well be described as a deterministic function dependent on (heavy) traffic. Thus road 

deterioration inherits the stochastic properties from traffic flow and is not an 

independent stochastic process. Hence, future traffic demand is the main source of 

uncertainty for real life applications of real option models for infrastructure investments.  

 Infrastructure planning in Sweden and in most other countries is based on two 

principles: cost-benefit analysis of projects based on the net present value criterion and 

on political considerations. Even if the value of flexibility is sometimes understood and 

implemented heuristically, no quantitative model for road planning based on real 

options has yet been considered. The application of the real option model (McDonald 

and Siegel 1986; Dixit and Pindyck 1994) in the context of infrastructure investments 

has recently become an active field of research. In the following we describe in short the 

part of the literature that this paper builds on. 

 Zhao (2001) shows the use of real option modeling for the construction of a 

hypothetical multistory car park. Since the investment is irreversible, the future demand 

has to be considered already in the initial planning. If certain features as the foundation 

and pillars are dimensioned higher than motivated by the initially projected demand, the 

construction can be adapted to future demand increases as they materialize. For a cost 

increase at the initial construction stage, an option is gained to build additional floors 

later on. On making the investment decision, the future gains from expansion have to be 

weighed against the costs of a stronger fundament. The demand is modeled in a 

trinomial lattice and stochastic dynamic programming is used to determine the optimal 
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expansion process. Comparing the value with and without flexibility, the conclusion 

drawn is that there is a significant real option value important to planning.  

 Zhao (2003) implements a model for decisions about motorway investments, 

considering three sources of uncertainty and their correlation: the traffic demand, land 

prices and road deterioration.  An optimal solution algorithm is based on the Least-

Squares Monte Carlo (LSMC) method, which takes into account the fact that Monte 

Carlo works forward whereas dynamic programming works backward. Smit (2003) 

combines game theory and real option theory in order to investigate how infrastructure 

investments can improve the strategic position of airports. Zhao (2006) shows how 

other than risk-neutral preferences can be modeled in a tree lattice; a parking lot is used 

as an example.  

 Saphores (2006) analyzes how uncertainty with regard to population size affects 

the optimal timing for measures against congestion. The results indicate that the optimal 

threshold value is dependent on the time it takes to implement such a measure: If 

implementation time is long and uncertainty is large the net present value criterion leads 

to late investment, which is in contrast to the findings in a standard real option model. 

The difference stems from the ambivalence of uncertainty here, since uncertainty 

amplifies both the benefits of the congestion measure and the costs of congestion during 

the time the measure is implemented.  

 This paper contributes to and builds on the previous research literature in several 

ways. First, we examine the stochastic properties that long term aggregate traffic 

demand exhibits based on Swedish data and find that traffic demand exhibit persistence, 

that is, a shock has besides the immediate impact also long-term consequences (so-

called long memory). Second, based on the results of the time series analysis, we 

examine how this type of process affects real option valuation in road projects. We 
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conclude that the long memory property in long term aggregate traffic demand leads to 

higher option values in road projects compared to the standard model used by previous 

research.  

 This paper is structured as follows. Section 2 discusses the relevance of real option 

theory for road investment planning. Section 3 study the time series properties of long-

run traffic demand, whereas section 4 analyzes how the persistence exhibited by traffic 

demand might affect the real option value in road projects. We find that persistence 

creates higher option values and thus that the use of the Geometric Brownian motion 

might be misleading. The paper ends with concluding remarks in section 5. 

   

2 Real options and infrastructure 

2.1 Concept of options 

A financial (call-) option is defined as the right but not the obligation to buy a certain 

asset at a certain time for a predetermined price. A financial put option is defined as the 

right but not the obligation to sell a certain asset at a certain time for a predetermined 

price. A call option increases in value as the value of the underlying asset exceeds the 

exercise price, whereas the put option decreases in value. The real-option approach 

views investment flexibility in real capital as an option; the right but not the obligation 

to invest a certain amount and thereby claim the future cash flows from the investment. 

One real option is the so-called timing decision, that is, we can, but we do not have to, 

invest immediately. The possibility of delaying the investment is a real option and the 

associated flexibility has a positive value if uncertainty exists about future cash flows. 

This is not always the case as the following example shows. An investment in an 

ordinary machine is not per se a real option. Despite the fact that we can buy, but are not 

obliged to buy, the machine, we cannot sell this right to someone else, since everybody 
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else could buy the machine as well. Hence, we have no option in an economic sense and 

the net present value criterion will lead to an optimal decision. Under certain conditions 

the investment flexibility still has a value even if the right to invest cannot be sold in the 

marketplace; it might be optimal to wait instead of investing as soon as the benefits 

exceed the costs. If investing immediately implies the lost flexibility to do so in the 

future, the possibility of waiting has a value for us even if it is of no value to anyone 

else. Thus, if investment capital is scarce or if the investment consumes an exhaustive 

asset, it can be optimal to wait (Andersson 2003). 

 This paper focuses on an infrastructure investment; you pay an amount for an 

asset now, such as a new road, in order to get a return from it in the future, such as 

increased traffic flow. We can analyze such a decision on a public investment with a 

standard real option model for optimal timing. Given that the underlying uncertainties 

(mainly traffic demand) are stochastic we want to solve the following problem (for 

details, see Chapter 5 in Dixit and Pindyck 1994): 

( ) ( )[ ]T

T eIVEVF ρ−−= max  (1) 

where ( )VF denotes the value of the investment flexibility, T denotes the unknown 

future time of investment, I is the amount needed for the investment flexibility, V is 

project value and ρ is the discount rate. The problem we have to solve is to choose an 

optimal time for the investment in the public project, that is, to pay the amount I for a 

public project giving the societal net benefits V. As traffic demand evolves 

stochastically over time, the value V of the project will also vary in a likewise fashion. 

Hence, we will not be able to find an optimal point of time, but a critical value *V  

determining that it is optimal to invest as *VV ≥ . The solution is given by: 

I
b

b
V

1
*

−
=  

(2) 
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where b is a function of the parameters α (expected project value growth), σ (standard 

deviation of growth rates) and ρ (discount rate). Since it can be shown that b>1, the 

critical value level V* has to be larger than the amount I needed for investment. By 

differentiating equation (2) partially we can derive the comparative static properties of 

the solution. The general implication is that volatility increases the option value of 

investing since the future becomes more uncertain, leading to a higher threshold value 

for immediate investment. Hence, traffic demand variance is important for determining 

the threshold value for optimal investment timing.  

 The effect of the discount rate is less clear; all things equal, the option value will 

be less for a higher discount rate since the future becomes less important. However, we 

would also expect the future growth rate of value derived from the project to increase, 

so the net effect is uncertain. However, for financial call options the second effect 

dominates, so that the option value increases with the discount rate. Similarly, the effect 

of risk aversion is ambivalent and depends on the net effect on ρ and α. Table 1 

summarizes and compares the key value drivers for real and financial options. 

Table 1: A comparison of financial (call-) options and real options 

Financial options Real options Impact on real 

option value 

Volatility of stock 

price 

Volatility of future cash 

flows 

+ 

Exercise price Investment cost - 

Time to expiration Window of opportunity 

for investment 

+ 

Risk-free interest 

rate 

Interest rate 

/opportunity cost 

(+) 

Dividend Value lost during option 

lifespan 

- 

Stock price Expected discounted 

cash flows 

+ 
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2.2 Real options in road related projects 

This section analyzes the contribution of the real option model for the timing and the 

design of road projects. The standardized planning process used by the Swedish Road 

Administration does not take into consideration the valuation of flexibility; that is, the 

real option value inherent in the decision process. At least two important real options 

are implicit in the decision for each separate road project: 

• The timing decision 

• The road design 

Timing decisions are important for all road projects since they are huge irreversible 

decisions financed by a constrained budget.  Hence, the standard real option model is 

applicable to all road investments. Second, not only the timing but also the design of the 

road may be seen as a dynamic decision. A common case for Swedish road projects is 

the case of road expansion, which is adding lanes to an existing two-lane road. 

However, up to now economic evaluation has been solely based on separately 

computing the net present value of two and four lanes. One important case has thus not 

been considered in a dynamic perspective: First, building a two lane road, and when we 

have better information in the future, expand the road to four lanes. Of course, if the 

expansion from the two to four lanes is expensive, we will not find this to be an optimal 

strategy. However, when building a road we can adapt certain critical elements, such as 

bridges, tunnels and right of way to a four lane road, in order to make a later expansion 

less expensive. Hence, if we invest an extra amount today, we will have the possibility 

of expanding later on for a smaller amount of money if the capacity limit is reached; 

that is, we acquire a real option for later expansion. Thus the timing decision and the 

design decision are interdependent on each other. The first question is whether we 
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should invest immediately; the second question is, when we invest, should we invest in 

a 2-lane road or a 4-lane road?  

 In previous projects the Swedish Road Administration has shown some intuitive 

understanding of the real option model and the value of flexibility. An example is the 

road project E6 in the Swedish region Halland between Göteborg and Halmstad. The 

foundations for a full motorway were already laid in the first plan containing two extra 

lanes for which the right of way was purchased. The bridges were adapted to motorway 

standard and the additional pillars necessary for a 4-lane motorway were built for the 

link between Fastarp and Fyllebro and between Fyllebro och Pråmhuset during the 

period 1960-1967. As the highway was expanded in the 80s and 90s, some of these 

bridges were used as planned, whereas some bridges were rebuilt because of technical 

and aesthetic reasons (Olsson 2003). 

 As mentioned above, the costs of purchasing the right of way and the preparation 

of bridges can be seen as the price paid for the option of later road expansion. In the 

initial planning, however, no explicit comparison was made between the option price 

(additional costs) and its future benefits (adaption to high traffic demand). Real option 

analysis is therefore necessary for a quantitative analysis of building a new highway 

first with the option to build a motorway later on.   

 The real option approach has been criticized for leading to postponement of 

investment, since, instead of investing now, we wait and see and maybe invest in the 

future. However, even if some investments are made later when considering the option 

value, it is clearly optimal to do so. Considering the option value increases the threshold 

for investing immediately since we need compensation for the lost flexibility to wait for 

more information. Moreover, for certain kinds of real options the opposite is true, since 

investing may sometimes be the only way to gain important information and hence 



 

 12

leads to early investment compared to the net present value criterion. Thus, investing 

now can be seen as the price to pay for gaining a real option; that is, the continuation of 

the project (sometimes this is called a learning option). Moreover, it is important to 

identify (and execute when optimal) the real options that are often implicit in 

investment projects.  

 The option to delay the decision is one of several possible options as we have 

seen. Other real options are the possibility of learning (also called growth option, since 

one project is necessary to pursue other projects that can be seen as options), the 

possibility of scaling an operation up or down (for example, to react to the business 

cycle), the possibility of switching (for example, switch from one input to another) or 

the possibility of abandoning a project earlier than planned. In fact, owners of an 

ethanol car have a switching option, since the fuel can be changed if altered market 

conditions make gasoline more economical for car drivers than ethanol and vice versa. 

The switching option in fact makes the ethanol car more valuable to consumers 

compared to either a pure gasoline car or ethanol car.  One additional insight from real 

option theory is that a road project often gives us a new option. For example, building a 

motorway between big city A and small city B will give us the option to build a 

motorway between small city B and big city C later, thus connecting A and C by a 

highway. Moreover, building a road network step by step will provide us with an option 

to adapt to new information while the road network is being built. The following table 

summarizes the most important real options for infrastructure and gives examples. 
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Table 2: Important real option types and examples 

Real option type Infrastructure example 

Option to defer Wait with new road investment till high 

traffic demand materializes; many transport 

projects in south Sweden were dependent on 

whether the Öresund bridge to Denmark 

would be built  

Option to learn Begin digging a tunnel in order to learn about 

the nature of rock formation and hence true 

constructions costs 

Option to abandon Cancel a contract if expectations are not met 

(the conditions for this might be specified in 

the contract) 

Option to scale up or down If canceling train traffic between two cities, 

keep the railway track and maintain it in case 

high future demand materializes to make it 

worthwhile to start up train traffic again 

Option to switch Switch between ethanol and normal gas 

dependent on price using an flexi-fuel engine 

Option to stage When building motorway between A and B 

divide the project into 2 stages: A-X and X-B. 

Option to get an option Connecting A and B gives you the option to 

connect A and C via B and so on 
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3 Stochastic properties of traffic demand 

Data for the number of registered cars is obtained via Statistics Sweden’s homepage 

www.scb.se. Table 3 summarizes the descriptive statistics of GDP and traffic growth 

seen over the entire sample period 1950-2005. The mean growth rate is considerably 

higher for traffic demand growth in terms of registered cars than for GDP growth (4.6 

% versus 2.3 %) and considerably more volatile in terms of standard deviations (5.6% 

versus 1.8 %). The time series of unemployment rates in Sweden was retrieved via 

ECOWIN for the time period 1970-2005 and extended backwards using an unpublished 

series. Unemployment is by far the most volatile variable, mainly due to the sudden and 

persistent rise in unemployment at the beginning of the 1990s. The most stable variable 

is population size, thus ensuring that the per capita growth rates are close to the growth 

rates shown in Table 3. 

 

Table 3: Descriptive statistics 

Variable Obs Mean Std. Dev. Min Max 

GDP 55 0.0227 0.0178 -0.0231 0.0626 

Population size 55 0.0046 0.0027 0.0003 0.0010 

Unemployment 55 0.0290 0.2089 -0.3830 0.6286 

Cars 55 0.0464 0.0563 -0.0138 0.2117 

PKM road 55 0.0480 0.0605 -0.0324 0.1941 

TKM road 55 0.0487 0.0653 -0.0938 0.2926 

PKM rail 55 0.0054 0.0549 -0.1398 0.1787 

TKM rail 55 0.0168 0.0681 -0.1992 0.1612 

 

Moreover, our analysis uses annual person-kilometer and ton-kilometer data for roads 

and railroads for the period 1950-2005. Ton-kilometer (TKM) and person-kilometer 

(PKM) data for road transportation is obtained from the statistics section of the Swedish 
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Institute for Transport and Communications Analysis web-page. The methods used for 

constructing these time series are described in SIKA (2004). We can see that traffic 

growth in terms of both passenger kilometers and transport kilometers is circa 4.8 % per 

annum with a mean deviation of 6 %. In contrast, rail traffic grows considerably less, by 

about 0.5 % per year in terms of passenger kilometers and 1.7 % in terms of ton 

kilometers. The standard deviation in the time series of rail traffic is comparable to that 

of road traffic (5.5 % for passenger kilometers and 6.8 percent for ton kilometers).  

Figure 1 and Figure 2 visually compare GDP and the traffic demand measures used. 

 

Figure 1: Comparison PKM (billion km) and GDP 
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Figure 2: Comparison TKM (billion km) and GDP 
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It is widely acknowledged that traffic demand and economic growth are strongly 

correlated. Moreover, evidence from Krüger (2009) shows that deviations from trend 

growth over different time scales (short term shocks and business cycles) reinforce this 

relationship for some types of traffic demand. Hence, traffic demand is likely to share 

important stochastic properties with GDP-growth.  

 Up to now, most have of the research on stochastic properties has focused on 

short.run traffic flow dynamics. Musha and Higuchi (1976) found evidence that short-

run road traffic fluctuations are non-Gaussian and better modelled as a long memory 

process and a vast amount of later research has confirmed this finding. However, the 

question is whether such stochastic anomalies using high frequency data for relatively 

short time spans are adequate to model traffic demand for road projects with an 

economic life span of at least 40 years. Moreover, it is difficult to filter out the complex 
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patterns of seasonality exhibited by high frequency data. We therefore use a different 

approach and perform tests of long-range dependence on annual data described above 

covering longer time periods.  

 As a test for long memory we use a test based on Geweke and Porter-Hudak 

(1983). If a series exhibits long memory, it is an I(d) process, where d is a real number. 

For a stationary process d equals zero, and for a non-stationary process d equals one. 

The process is called fractionally integrated if d is not an integer value. The method uses 

nonparametric methods to evaluate d without explicit specification of the short-memory 

ARMA-parameters of the series. We also calculate the Hurst-parameter H as a measure 

of (anti-)persistence as follows (Percival and Walden 2000): 

[ ]5.0,5.05.0 −∈∀+= ddH  (3) 

 

The results are summarized in Table 4. 

Table 4: Results of fractional integration estimation 

Data D H 

GDP 1923-2005 0.28 0.78 

Cars 1923-2005 0.13 0.63 

TKM 1950-2005 0.20 0.70 

PKM 1950-2005 0.58 Not defined 

 

All the time series exhibited evidence of d>0 in growth rates and hence they are non-

Gaussian. Gaussian noise is the basis for geometric Brownian motion (GBM) so that the 

results suggest that the use of GBM is inappropriate. GBM is widely used in finance, 

since it has the so-called martingale property. The martingale property simply states that 

changes in a process are independent from each other. Independent changes makes the 

future unpredictable which explains the use of GBM in finance since the notion of 
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unpredictability is consistent with the efficient market hypothesis and no arbitrage 

condition. For traffic demand there are no analogous reasons for rejecting long term 

persistence which would imply some degree of predictability. On the contrary, we 

would expect habits and switching costs creating persistence in traffic demand. For 

example, once we choose to buy a car or buy a house at a certain location, it is costly to 

switch to another mode of transportation. The long-memory property of traffic-demand 

we find for long-term aggregate data is confirming the short-run findings in earlier 

research. In the next section we proceed to examine the implications for real option 

valuations taking a road expansion as example. 
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4 Stochastic properties of traffic demand and real options: A 

case study concerning road expansion 

4.1 Assumptions 

In order to reduce computational effort, we model the road expansion option as a so-

called European option; that is, the option can only be exercised in a pre-specified 

future year. We assume that about 12,000 cars per month will use the 30-kilometre long 

road connecting A and B in either direction. Further, we assume that the trend growth in 

traffic flows is about 3 percent each year and that the traffic flows have a standard 

deviation of 5 percent per year. Based on these assumptions, we have to take the 

decision whether to invest immediately and, if we invest, how many additional lanes to 

build. The problem here is the comparison between a two-lane road soon becoming a 

bottleneck and a four-lane road plagued by higher costs and underused capacity. The 

cost per lane is 1 million Euro.  

 The benefits from new roads are mainly time savings and increased safety. The 

time savings are zero if congestion is sufficiently large. We assume here that the 

comparison alternative would imply an average speed of 70 km/h. That is, the journey 

between A and B will take 25.7 minutes. The highway, however, allows for an average 

speed of 90 km/h, so that the 30-kilometer long journey only takes 20 minutes. If we 

assume that the average value-of-time is 10.5 Euro per hour, this corresponds to 1 Euro 

per car. We assume, therefore, that each car using the road up to the capacity limit is 

valued at 1 Euro. 

 We further assume, in line with other research, that a road can absorb a significant 

amount of traffic above capacity limits, but that the benefits for society of this extra 

traffic are zero. For each car entering above the capacity limit we can think of 
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congestion costs that reduces the overall net benefits. For example, if the net benefits for 

the driver entering the road is 1 Euro on average (assuming the alternative route 

represents a value of .99 Euro), if the (external) congestion costs is 0.01 Euro per car 

and 100 cars simultaneously using the affected road section, this implies that the 

individual benefit is 1 Euro (otherwise the driver would not use the road), but that the 

sum of marginal disutility for all others is 1 Euro as well and hence we have that 

societal net benefits is reduced to 0 Euro. Since the uncertainty with regard to traffic 

demand on a certain road is more pronounced than uncertainty with regard to 

maintenance costs, and that maintenance costs can be sufficiently determined by 

deterministic models as a function of road usage, we assume that costs per car are 

constant in real terms. The cost of preparation of a two-lane road with a later expansion 

option is hard to estimate correctly. Ex-ante we do not specify any construction cost for 

the road expansion. Ex-post, we can interpret the value of flexibility as the upper 

boundary for the cost road expansion. 

 We proceed as follows. First, we present a simple standard simulation model 

based on geometric Brownian motion in order to quantify the option value of road 

expansion. Second, based on the results of time series analysis and previous research on 

traffic demand, we estimate the impact of alternative stochastic processes on option 

value. 

 

4.2 Standard model based on geometric Brownian motion 

The investment decision is dependent on future demand. It is hard to predict the exact 

number of cars since this depends on many different factors. However, looking at the 

materialized traffic demand as one realization of a stochastic process followed by traffic 

demand, we can draw interferences with regard to the underlying process. Based on 
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that, we can simulate future traffic flows. Each sample path represents a different 

history. Each of these proposed future traffic paths are extremely unlikely to be correct, 

but we can construct a distribution of traffic demand for each future point in time. Using 

these distributions we calculate expected values and take decisions (given risk 

neutrality). The starting point for our analysis is the Geometric Brownian motion often 

used in real option valutation: 

TVdBTVdtdTV σµ +=  (4) 

Where TV is the monthly traffic volume and µ is the drift rate, σ is the volatility 

measured as standard deviations and dB is the infinitesimal increment in a Brownian 

motion. In order to simulate the sample paths we make use of the explicit solution to the 

geometric Brownian motion (Oksendahl 2000): 

tBt

t eTVTV
σσµ +−

=
)5.0(

0

2

 (5) 

It is obvious that the road value is dependent on the realized path. Even a small 

volatility has a major impact on the range of possible future outcomes. The assumption 

of a geometric Brownian motion means that traffic is normally distributed, which in 

turn implies that future traffic is log-normally distributed. 

 The alternative with 2 lanes only is restricted to 15,000 cars per month. Another 

feasible alternative is to immediately invest in a four-lane road (with capacity 30,000 

cars per month), thus providing more capacity in case road traffic grows fast in the years 

to come. However, on investing immediately in 4 lanes we have unused capacity in 

many cases over a long period; in the most optimistic case we will reach capacity limit 

in 15 years, but in many cases we will never have to use the additional capacity. Hence, 

an alternative is to wait and eventually invest later in an expansion to 4 lanes. Figure 3 

illustrates the real option case. 



 

 22

 The results from the Monte-Carlo simulation based on the geometric Brownian 

motion are given in Table 5 and illustrated in Figure 3. According to these results we 

will prefer the 2-lane road to the 4-lane road. Thus, the cost of a too low capacity caused 

by foregone benefits is less than the capital costs of underutilized capacity. The flexible 

alternative would be to build 2 lanes now and later expand to 4 lanes (see Figure 4). As 

outlined above, that would require certain measures like the purchase of right of way 

and the adaptations of bridges and tunnels, so that the expansion may take place in the 

future when we have more information with regard to traffic demand.  According to 

Table 5 the real option alternative is preferable compared to the other alternatives if the 

additional costs are not larger than 240 thousand Euro.  

 

Figure 3: Simulation of traffic demand 
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Table 5: Present value of 2 lanes, 4 lanes and real option alternative 

Alternative Present value 

2 lanes 1.959 600 Euro  

4 lanes 1.816 800 Euro  

2 lanes + option  2.201 800 Euro  
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Figure 4: Payoff from real option alternative 
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The reason for this result is that we do not have to finance unused capacity in the first 

years. The real option value can be divided into two parts: the pure value of waiting and 

the value of information. The first effect is the result of the fact that the benefits (traffic 

demand) grow more slowly than the discount rate. Hence, the benefits are discounted 

less than the costs, so that it is optimal to postpone investments. The second effect is the 

result of information with regard to the status of the stochastic process; that is, we only 

expand the road when sufficient traffic demand growth has materialized. In the cases of 

traffic demand being low, we will probably never have to use the expansion option. If 

we do not sort out the outcomes with low future traffic demand, the flexible alternative 

becomes less valuable. The difference is approximately 56.2 thousand Euro (see Table 

5). Hence, we get a higher value if the option is exercised only in the 66 percent of total 

paths where the outcome lies above 15,000 cars in 10 years.  The optimal threshold can, 

in principle, be determined by Equation 2. We use a numerical approach to determine 

the threshold value maximizing option value. 
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4.3 Alternative model based on fractional Brownian motion 

Since we have provided some empirical evidence that traffic demand might be better 

characterized by stochastic processes other than the normal distribution, we check 

whether the assumption that noise around trend growth is Gaussian (H=0.5) is crucial 

for real option valuation. As an alternative we model the process as follows: 

TVdFTVdtdTV σµ +=   

with ( )HfdF ,σ=  

(6) 

This can be written as: 

dFdt
TV

dTV
σµ +=  

(7) 

where dF is the increment of fractional Brownian motion with parameters σ measuring 

volatility and H measuring (anti-)persistence. Hence, the percentage increase in traffic 

demand is expected to grow with µ and uncertainty (that is, the confidence interval 

around the expectation) about future traffic growth rates increases by t
H per year. 

Hence, the future traffic volume is distributed as follows: 

( )σµ Ht ttN
T

T
,

log

log

0

=  
(8) 

Thus, for persistent processes with H>0.5 the range of possible outcomes grows faster 

than the square root of time predicted by the geometric Brownian motion. 

The parameter H can take values between zero and one. We simulate 100,000 

sample paths for each value of H between 0.1 and 0.9 with step size 0.1, and use the 

Euler approximation scheme (Mikosch 1998) to numerically solve the stochastic 

differential equation driven by fractionally integrated noise proposed in Equation 6. 

Solving a stochastic differential equation means that we can compute the value of the 

process given the status of the underlying stochastic process. The Euler-approximation 

scheme can be described by the following set of equations: 



 

 25

00 TVTV =  (9) 

n
Tt =∆  (10) 

titit FFF
i ∆−∆ −=∆ )1(  (11) 

niFTVtTVTVTV
ittitititi ,...,1)1()1()1( =∀∆+∆+= ∆−∆−∆−∆ σµ  (12) 

 

Figure 5 illustrates and compares the explicit solution of the GBM with the solution 

provided by the Euler approximation scheme using 5, 20 and 100 steps.  Obviously, the 

quality of the approximation scheme depends on the number of simulated steps. 

 

Figure 5: Numerical solution with 5, 20, 100 steps & explicit solution of GBM 

 

Because of the flexibility provided by the Euler approximation, we use it to solve 

Equation 6 numerically. An analytic solution to the FBM exists, but the Euler scheme 

allows for a simpler adaption to alternative formulations of the underlying process for 

traffic. It is in principle possible to combine FBM with mean reversion, jump processes 

or additive noise. Such and similar extensions might be interesting alternatives to the 

formulation of FBM with trend used here. The simulated sample paths are used to 

evaluate the option value defined as the difference between the flexible solution and 

best inflexible solution (either two lanes or four lanes). The estimated option value 
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indicates the amount that can be spent today to increase future flexibility with regard to 

traffic demand. Table 6 and Figure 6 show the results. 

 

Table 6: Option value in thousand Euro, H and threshold level 

 

Figure 6: Option value as a function of H and the threshold 
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 H 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 

 

Threshold 

12,000 158.2 156.3 156.7 153.0 157.4 170.1 192.5 226.4 272.5 

13,000 157.7 159.0 159.8 163.3 170.9 188.1 219.9 258.2 308.2 

14,000 157.7 159.1 163.2 170.4 182.8 206.2 235.5 275.6 324.9 

15,000 136.0 140.8 150.4 163.2 182.2 206.6 240.2 282.5 335.2 

16,000  72.7  81.0  89.0 130.4 158.8 192.5 228.8 273.5 330.3 
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We see that the option value varies with the value of H of the stochastic process. Anti-

persistent behaviour lowers the option value, since traffic demand reverts to its long-run 

growth level. The degree of uncertainty and therefore the value of flexibility are 

therefore less compared to the case when H=0.5. When the cumulative noise process 

instead exhibits long memory (H>0.5), the value is higher, since unforeseen stochastic 

shocks generate long cycles that change the probability that traffic demand forecasts 

(the confidence interval around the expectation) grow faster than the square root of time 

predicted by geometric Brownian motion. Given that there is some evidence that we 

have long memory, it seems that the option value is higher than predicted by the 

standard model. In our example, the option value is 3% higher than predicted by the 

GBM for H=0.6 and 10% higher for H=0.7. Moreover, the non-linear impact of the 

persistence parameter H on the option value is a non-trivial insight gained from our 

analysis. Interestingly the optimal threshold level for exercising the expansion option 

depends positively on the Hurst-parameter, so that the optimal threshold is higher for 

persistent processes than for Gaussian processes. This indicates that the information 

value of observed traffic flows is higher for persistent processes. 

 

5 Concluding remarks 

The purpose of the paper was i) to examine the time series property of traffic demand 

and ii) to analyze the impact of stochastic properties on real option valuation. As a case 

study the paper analyzes the real option value that can be obtained by adapting certain 

critical construction elements and right of way purchase so that a later road expansion 

from two to for four lanes is possible at a lower cost. Based on the statistical analysis of 

GDP and traffic demand, we conclude that traffic demand evolution is characterized by 

persistence. An economic shock boosting traffic demand growth will result in higher 
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future traffic demand growth, for example by establishing new habits. This has 

important implications on real option valuation since the degree of future uncertainty is 

higher than predicted by the standard model. We therefore advocate further research on 

the time series properties of traffic demand, since it is a central issue when planning 

huge irreversible road investments. The use of the risk-neutral interest rate used in many 

real-option applications of infrastructure can be questioned based on the time series 

properties we found. Furthermore, even if the standard model might be convenient to 

derive comparative-statics in conceptual real-option models related to transportation, we 

think that in real-life applications planners should acknowledge our empirical findings. 
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MATLAB-code for simulation study: Fractional Brownian motion 
 
 
% This program evaluates alternatives based on the 
simulation of fractional 
% Brownian noise 
clear; 
for hi=1:9; 
    for tl=1:5; 
clear t; 
S_0=12000; 
T=39; 
mu=0.03; 
sigma=0.05; 
dt=1; 
N=500; 
Steps=T/dt; 
t(1,:)=1:40; 
t=repmat(t,N,1); 
H=hi/10; % Hurst-index between 0.1 and 0.9 
 if H==0.5; 
     H=0.5+0.000000001; % ffgn needs H<0.5 or H>0.5 
 end; 
  
FN=ffgn(sigma,H,N,40,0); 
W_tl= cumsum(FN,2); 
W_t=transpose(W_tl); 
S(1,1:N)=12000; 
for i=2:40; 
for j=1:N; 
    S(i,j)=S(i-1,j)+1*S(i-1,j)*(W_t(i,j)-W_t(i-1,j))+S(i-
1,j)*mu; 
end; 
end; 
% figure(1) 
% plot([0:dt:T],S); % plot S_t against t 
%xlabel('t','FontSize',16);ylabel('TV(t)','FontSize',16,'Ro
tation',0); 
  
%Alt1:2way 
A=min(S,15000); 
%figure(2) 
%plot([0:dt:T],A); % plot S_t against t 
  
  
%Alt2:4way 
B=min(S,30000); 
%figure(3) 
%plot([0:dt:T],B); % plot S_t against t 
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%Alt3:2way+ev 4way in 10 years 
C=A(1:40,1:N); 
B2=B; 
A2=A; 
  
for i=1:N; 
if S(10,i)>10999+tl*1000; %Threshold between 12000 and 
16000 
    C(11:40,i)=B2(11:40,i); 
    y(i,1)=1; 
else 
    C(11:40,i)=A2(11:40,i); 
    y(i,1)=0; 
end 
end 
  
%figure(4) 
%plot([0:dt:T],C); % plot S_t against t 
  
%CBA of alternatives 
  
%Alt1 
for i=1:40; 
    for j=1:N; 
        CA(i,j)=A(i,j)*10*12*exp(-0.05*t(1,i)); 
    end; 
end; 
  
DCA=sum(CA,1); 
EDCA=sum(DCA,2)/N-10000000; 
  
%Alt2 
for i=1:40; 
    for j=1:N; 
        CB(i,j)=B(i,j)*10*12*exp(-0.05*t(1,i)); 
    end; 
end; 
  
DCB=sum(CB,1); 
EDCB=sum(DCB,2)/N-20000000; 
  
%Alt3 
for i=1:40; 
    for j=1:N; 
        CC(i,j)=C(i,j)*10*12*exp(-0.05*t(1,i)); 
    end; 
end; 
  
DCC=sum(CC,1); 
p=sum(y)/N; % Probability that we will exercise the 
expansion option 
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EDCC=max(sum(DCC,2)/N-10000000-p*10000000*exp(-0.05*10)); 
  
  
OV(tl,hi)=EDCC-max(EDCA,EDCB);%Option values for different 
H and Thresholds 
  end; 
end; 
  
  
% Create figure 
figure1 = figure('PaperSize',[20.98 29.68]); 
colormap('gray'); 
  
% Create axes 
axes1 = axes('Parent',figure1,... 
    
'YTickLabel',{'12000','13000','14000','15000','16000','3.5'
,'4','4.5','5'},... 
    'YTick',[1 2 3 4 5],... 
    
'XTickLabel',{'0.1','0.2','0.3','0.4','0.5','0.6','0.7','0.
8','0.9'},... 
    'XTick',[1 2 3 4 5 6 7 8 9],... 
    'Position',[0.13 0.11 0.775 0.815],... 
    'FontSize',16,... 
    'CLim',[0 1]); 
 xlim([1 9]); 
 ylim([1 5]); 
view([-45.5 20]); 
grid('on'); 
hold('all'); 
  
% Create surf 
surfl(OV); 
  
% Create xlabel 
xlabel({'H'},'FontSize',20); 
  
% Create ylabel 
ylabel('Threshold','FontSize',20); 
  
% Create zlabel 
zlabel({'Option Value'},'FontSize',20); 
 
 
 

 


