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Abstract 

Real-time information is increasingly being implemented in transit networks worldwide. The 
evaluation of the effect of real-time information requires dynamic modeling of transit 
operations and of passenger path choices. This paper presents a dynamic transit analysis and 
evaluation tool that represents time-tables, operation strategies, real-time information, 
adaptive passenger choices, and traffic dynamics at the network level. Transit path choices 
are modeled as a sequence of boarding, walking and alighting decisions that passengers 
undertake when carrying out their journey. The model is applied to the Metro network of 
Stockholm, Sweden area under various operating conditions and information provision 
scenarios, as a proof of concept. An analysis of the results indicates substantial path choice 
shifts and potential time savings associated with more comprehensive real-time information 
provision and transfer coordination improvements.  
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1. INTRODUCTION 
Public transportation systems are becoming increasingly complex with the incorporation of 
various modes, services, information and communication technologies, and transit operation 
strategies. Advanced Public Transportation Systems (APTS), such as Automatic Vehicle 
Location (AVL) and Automatic Passenger Counts (APC), enable transit agencies to 
implement dynamic control strategies and provide travelers with real-time information (RTI) 
aimed to support their travel decisions. 

Transit assignment models assign passengers to transit routes in order to predict 
passenger loads on transit lines and segments. These loads are then used to obtain the 
respective levels of service and service performance measures. These models are classified 
into two categories: frequency-based and schedule-based [1]. Frequency-based models are 
commonly static. They often assume constant headways and distribute the demand among 
competing routes according to their share in the 'combined' frequency. The underlying 
assumptions are that passengers arrive randomly at stops and board the first bus that arrives at 
their origin stop. This approach was extended from the deterministic case [2,3] to the 
probabilistic case [4,5]. [6] introduced the concept of strategies to model the available transit 
alternatives. A strategy is defined by a set of rules that when applied allows travelers to reach 
their destinations. For example, a passenger can follow a strategy of taking the first bus that 
will go to a certain transfer stop in the first 10 minutes of waiting, and wait for the direct bus 
after that. [7] formulated how each strategy can be represented as a directed graph connecting 
the origin to the destination defined as hyperpath. 

In contrast, schedule-based models take into consideration service time-tables, 
transfer coordination and passenger arrival processes that follow from the schedule [8,9]. In 
networks with dynamic time-dependent network conditions and passenger loads, it may not 
be realistic to model path choices based on the shortest path in terms of the sum of the 
shortest trip segments between each pair of intermediate stops, as used in conventional 
shortest-path algorithms. Hall introduced the concept of adaptive path choice as the chosen 
path depends on passenger arrival time and time-dependent uncertain travel times [10]. 
Furthermore, the en-route dynamic path choice can be further extended to day-to-day 
dynamics by incorporating learning processes [11,12,13]. 

The increasing number of transit agencies providing travelers with en-route RTI [14], 
calls for models that will represent passengers' response to RTI in order to evaluate them and 
refine their design. Providing RTI can assist and support passenger decisions by reducing the 
level of uncertainty involved with using the transit system, providing time-specific 
information, informing about unusual conditions and providing knowledge about less familiar 
alternatives. [15] developed an analytical framework for modeling the adaptive boarding 
choice when RTI regarding the next bus arrival is available at the stop. [16] investigated the 
same problem in the frequency-based context with different service reliability conditions. 
RTI can also support alighting decisions by referring to transfer alternatives. [17] formulated 
frequency-based route choice models and concluded that the influence of transfer information 
on passenger loads is as important as the arrival times at the boarding stops. However, 
previous studies did not consider how transit performance and service disruptions interact 
with dynamic passenger path decisions under various information provision strategies. A 
more realistic representation is needed in order to analysis how system components evolve 
over time. 



4 
Cats, Koutsopoulos, Burghout and Toledo 

 
 

The aim of this paper is to present a dynamic transit operations and assignment model 
that represents the role of RTI in passenger path choice and to demonstrate its application. A 
dynamic transit simulation model has to capture the interactions between three main 
components: passengers, transit operations, and traffic dynamics at the network level. The 
developed model enables analysis of the interactions between time-tables, traffic conditions, 
operation strategies, RTI and adaptive choices by passengers.  
The remainder of this paper is organized as follows: Section 2 presents the framework of the 
dynamic transit model, focusing on passenger path choice modeling and the role of 
information. Section 3 describes the details of Stockholm’s Metro system experiment and the 
scenarios that had been applied as a proof of concept. The corresponding transit assignment 
results are analyzed in Section 4, followed by a summary of the main results and a discussion 
of future research directions. 

2. DYNAMIC TRANSIT MODELLING 
The dynamic transit model, BusMezzo, is used as the platform for modeling transit 
operations dynamically. BusMezzo consists of three components: traffic dynamics, transit 
operations, and passenger demand. The integration of these components enables a joint car 
and public transportation model. Demand for cars and public transportation is considered 
separately. The model can either be used as an external part of a larger planning model which 
includes mode choice or a standalone model for a joint traffic and transit operations analysis. 
BusMezzo is an open-source model that was developed and validated by the authors [18]. 
The model outputs include the passenger assignments at the single trip, line, and the entire 
path levels, as well as detailed operational data (e.g. time, headway, passenger volumes) for 
every transit vehicle at each stop visited. 

2.1 Traffic Dynamics 
A mesoscopic traffic simulation model, Mezzo, captures traffic dynamics. It models 
individual vehicles but without representing their second-by-second movement. Links are 
divided into two parts with dynamic boundaries: running part and queuing part. Travel times 
on the running part are defined by a speed-density function. Travel times on the queuing part 
are determined by individual stochastic queue servers. The mesoscopic level of representation 
provides an appropriate trade-off between the level of detail on one hand and the ability to 
analyze at the system-wide level on the other hand. A complete description of the structure of 
Mezzo and its implementation details is presented in [19]. 

2.2 Transit Operations 
The traffic simulation model incorporates transit components designed to enable the analysis 
and evaluation of transit operations, especially in the context of Advanced Public 
Transportation Systems (APTS). BusMezzo incorporates the main sources of service 
uncertainty: passenger demand and arrival process, dwell time functions, and trip chaining. 
The dwell time function structure was obtained from [20]. In addition, through the interaction 
with Mezzo, it also incorporates uncertainty caused by general traffic conditions. 
Trip chaining is modeled explicitly. Transit vehicles follow a schedule with a list of trips that 
are carried out sequentially. The actual departure time of a chained trip is calculated as the 
maximum of the scheduled departure time or the time the bus vehicle is available to depart 
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after it completed its previous trip, including a minimal recovery time. The explicit 
representation of trip chaining allows the simulation to capture the propagation of delays 
from one trip to the next and its effect on the level of service. Furthermore, it allows taking 
into account fleet size constraints through the respective recovery time policy. A detailed 
description of the transit-related simulation framework as well as model validation is 
presented in [21]. 

2.3 Passenger Demand 
The developed model enables several levels of passenger demand representation to suit 
various application interests and data availability. At the aggregate level, passenger demand 
can be represented in terms of passenger arrival rates and alighting fractions for each stop and 
line. In this case, the model represents flows and not individual passengers. Alternatively, the 
individual passengers may be generated, and explicitly used in the model, from a matrix of 
trips between pairs of stops. Vehicle capacity constraints are modeled explicitly in all cases. 
When individual passengers are considered, the transit assignment model consists of two sub-
models: choice-set generation and path choice process. 

2.3.1 Choice-Set Generation 
The generation of the choice set aims to reproduce the set of alternatives that is considered by 
passengers and cannot be directly observed. This process has to be on one hand limiting 
enough to exclude irrelevant paths and on the other hand flexible enough to include all the 
paths that may be chosen. In BusMezzo, transit path alternatives are defined as ordered 
combinations of the elements that compose the trip. These elements are transit stops, transit 
lines and connection links (access, egress and transfer links that can be carried out by walking 
between two points). The choice-set generation algorithm initially looks for all direct paths 
between each pair of ODs in the network. It then searches for all possible paths with a single 
transfer and gradually considers paths with increasing numbers of transfers. This recursive 
search method is terminated when a maximum allowed number of transfers is reached. This 
maximum is defined relative to the path with the minimum number of transfers that was 
found for the specific OD pair. Generated paths that do not fulfill logical constraints (e.g. a 
path that has passengers get off a bus and wait to board the next bus on the same line) are 
eliminated from the choice-set. 

Following [22], the generated paths are screened and only those which are not 
dominated by other path alternatives (in terms of number of transfers, total travel time and 
total walking time) are retained in the choice-set. The dominancy rules incorporate perception 
thresholds to determine if a path alternative exceeds the maximum allowable digression 
relative to other path alternatives. Furthermore, non-dominated alternatives that imply longer 
in-vehicle time than the shortest path alternative by a given threshold are also excluded from 
the choice-set. In the common case of several transit lines using the same corridor and 
therefore allowing several equivalent transfer locations [4] – alternatives are merged into a 
single path alternative.  

2.3.2 Path Choice Model 
Once the set of alternative paths has been generated for each OD pair, the path choice model 
determines how passengers progress in the network. Unlike static assignment models, 
passengers do not only select a path from the pre-defined choice set, but make a sequence of 
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path decisions as they progress through the network.  All passenger decisions are based on 
random utility discrete choice models. Each decision is defined by the need to choose the 
next path element (stop, line or walking connection) taking into account all the path 
alternatives associated with this element. 

The passenger path choice process is presented in Figure 1. When passengers start 
their trip, they first whether to stay at the origin stop or walk to a nearby stop, by considering 
all path alternatives that are associated with traveling from each candidate stop to their final 
destination. At the stop, when a transit vehicle arrives, the passengers decide whether to 
board it or not. This decision involves the comparison of the utility associated with boarding 
versus that of staying and waiting for vehicles on the other paths in the choice set. After 
boarding a transit vehicle, passengers decide at which downstream stop to alight. If on-board 
information is available, passengers can revise their alighting decision. After alighting at a 
stop, passengers choose to stay at the same stop, walk to a nearby transfer stop or, if possible, 
walk directly to the final destination. In case the alighting stop is a transfer stop then 
boarding, alighting, and connection decisions are repeated until the passenger reaches the 
final destination.  

The deterministic part of the utility function takes the same form for all travel 
decisions: 

        (1)  

Where  is a vector of coefficients and  is an attribute of path alternative . The utility 
function can include passenger expectations regarding various attributes as waiting times, 
comfort, and monetary cost. Note that alternatives are bundled according to different criteria 
in various travel decisions and that their joint utility is calculated based on the expected 
maximum utility (logsum) term [23].  

Figure 1 

2.3.3 Traveler Information 
Passengers’ expectations regarding the time components (waiting time, in-vehicle time, 
walking time when transferring, access and egress times) associated with each path 
alternative depend on their prior knowledge and the information available en-route. Transit 
assignment models commonly assume that travelers have a-priori knowledge on network 
configuration and expected riding times [24]. However, models vary in their assumptions on 
traveler information with regard to transit lines arrival time at stops. In the context of urban 
networks with high-frequency transit services, it is appropriate to assume that passengers 
only know (or take into account) the planned headways rather than the complete timetables.  

Transit operators provide passengers with RTI in order to reduce the uncertainty 
involved with undertaking transit trips and to enable passengers to make informed path 
decisions. RTI provision can vary by its location (at stops, on board), comprehensiveness 
(single stop, cluster of connected stops, complete network) and nature (expected arrival 
times, expected travel times). The level of RTI comprehensiveness determines which path 
decisions are influenced by the information provided, while its location determines when this 
influence takes place. For example, RTI at a transfer hub regarding a cluster of connected 
stops affects both connection and boarding decisions. Passenger alighting decisions may 
incorporate RTI in the case it is provided regarding the entire network. With the growing 
popularity of smart phones and other personal devices, more travelers have access to web-
based RTI. 
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BusMezzo models different levels of information at different decision stages. A 
modular structure enables representation of each decision situation with the appropriate 
service characteristics and the level of information available to passengers. In the case study 
presented next, the RTI provides the expected remaining time until the next arrival of each 
relevant bus line. This information is calculated based on the current location of the transit 
vehicle and the expected travel times between its current location and the given stop. In case 
of irregular service conditions, the RTI contains also the expected delay in downstream riding 
times.   

The underlying assumption of the model is that whenever passengers have RTI 
available, their prior expectations regarding waiting and in-vehicle times are updated by the 
RTI provided. These expectations are explicitly incorporated into the utility function 
components. 

3. CASE STUDY 

3.1 Experiment Description  
As a proof of concept, the dynamic transit operations and assignment model is applied to the 
Stockholm Metro network. This network consists of seven routes clustered into three main 
lines identified by their color: blue (T10-T11), red (T13-T14) and green (T17-T19), as shown 
in Figure 2. The complete network was coded into BusMezzo, with the real-world time tables 
and walking distances between platforms. The network consists of 210 platforms situated at 
100 stations. The Metro operates high-frequency service, with scheduled headways of 10 
minutes in each branch. Passengers are assumed to plan their trip without considering the 
timetables, implying a Poisson arrival process at the origin stop. However, Metro dispatching 
is regulated based on the time-table and a schedule-based holding control is applied at all 
stops with the scheduled departure time as the earliest exit time (see [25] for a discussion of 
holding strategies in the context of urban rail operations). 

Figure 2 
The choice-set generation algorithm was used as a pre-process step to the simulation 

runs. It resulted in 14,699 alternative paths for the entire network. The execution time was 
3:10 minutes and 10 seconds on a standard PC. 

3.2 Scenarios Design 
The case study considers RTI provision at all stations in the Stockholm Metro network with 
three levels of comprehensiveness:  

1) Platform: RTI for all trains departing from a specific platform 
2) Station: RTI for all trains departing from all platforms of a specific station 
3) Network: complete RTI for all trains in the network 

In this network, stops consist of separate platforms for each main line. Platform-level RTI 
is available at all platforms. Therefore RTI at the platform-level is regarded as our base case 
scenario. Furthermore, all routes of the same main line have a common platform. Therefore, 
choosing a platform stop is equivalent to choosing a metro line. RTI at the platform-level can 
influence passenger boarding decisions only when travelling to a stop that is not served by all 
line routes. Otherwise, there are no path-choice implications to providing RTI at the 
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platform-level, as passengers are indifferent between different routes of the same main line. 
In addition, it is not realistic that passengers will choose to walk to a nearby stop in case of 
information on long waiting times as headways are short relative to walking times. In 
contrast, providing RTI at the station-level can be utilized for choosing another platform in 
the connection decision. Providing real-time arrival and riding times at the network-level may 
influence passenger path decisions at all stages, including alighting decisions. 
In addition, the case study includes three operational conditions. The base case scenario of 
normal operations and two possible disruptions were examined (see Figure 2): 

 (R) Normal operating conditions with real-world travel times and timetables.  
 (DR) A 15 minute delay in riding time on the Blue Line from Fridhemsplan to T-

Centralen  
 (DF) A reduction in frequency on the Green Line from a total of 18 vehicles per hour 

to 6.  

RTI provision can be particularly advantageous in the case of service disruptions, causing 
longer than expected riding or waiting times. These kinds of disruptions may be caused by 
mechanical, operational, or technical problems. For example, the Stockholm Metro was 
subject to major service disruptions during the winter of 2010 due to frozen tracks caused by 
extreme weather conditions.  

The experimental design consists of three levels of RTI provision (1- platform; 2- stop; 3- 
network) and three network operational conditions (R- regular; DR- riding time disruption; 
DF- frequency disruption) resulting in nine scenarios. For each scenario, 10 simulation runs 
were conducted for a three hour period with uniform passenger demand. The number of 
replications was found to be sufficient with an allowable error of 2% for the average 
passenger travel time, which is the outcome of interactions between all random processes in 
the system [21].  

4. RESULTS 
The results show that passenger stop and line choices are affected by the service disruption 
scenarios and incorporate the available level of RTI. The analysis of the results focuses on the 
origin-destination pair of Stadshagen (S) and Gamla stan (G) (Figure 2). Focusing on a single 
OD pair enables a clear interpretation of the results. 

There are no directs lines connecting stops (S) and (G). There are two possible transfer 
stops: Fridhemsplan (F) and T-Centralen (T). The choice-set generation model generated 
three alternative paths for this OD pair:   

 Path A: Blue Line to (F) and transfer to the Green Line  
 Path B: Blue Line to (T) and transfer to the Green Line  
 Path C: Blue Line to (T) and transfer to the Red Line  

The generated path alternatives were merged according to joint transfer stops and routes 
as the choice-set generation phase guarantees that each alternative path contains all routes 
that utilize the same stretch. Paths that include more than a single transfer were eliminated 
during the choice-set generation procedure since they were dominated by more attractive 
alternatives. The network configuration and the corresponding travel attributes associated 
with the relevant components are illustrated in Figure 3. Note that the trip fare is fixed 
regardless of the chosen path. 
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Figure 3 
Utility function coefficients were estimated based on a stated-preference survey. A 

more detailed description can be found in [26]. The utility function takes the following form: 
  (2) 

Where , ,  and  are the waiting time, in-vehicle time, walking 

time and number of transfers involved with path alternative . ’s are the corresponding 

coefficients and  is the error term. Waiting time and walking time have the same 
coefficient, which is about double that of in-vehicle time. The disutility associated with 
carrying out a transfer is equivalent to 4.77 in-vehicle minutes. These coefficient values are in 
line with results of previous studies. The different information scenarios may affect passenger 
expectations regarding waiting and in-vehicle times and therefore the disutility associated 
with an alternative. Note that the level of uncertainty involved with a path alternative is not 
included in the utility function. It is assumed that passengers regard the RTI as accurate and 
fully incorporate the RTI that is available at each decision point. Each individual passenger is 
assigned with preferences and walking speed sampled from truncated normal distributions.  
Table 1 summarizes the average total journey time and its components of in-vehicle time and 
out-of-vehicle time. Figure 4 presents the distribution of passengers between the three 
possible paths.  

Compared with the base case scenario of platform-level information, providing real-
time arrival information on all platforms in a transfer stop can be beneficial in the case of (T). 
Moreover, providing real-time arrival and riding times for the whole network may influence 
both alighting decisions (T or F) and connection decisions (red or green in the case of 
transferring at stop T). 

In the base case scenario, 63% of the passengers choose to transfer at (T) since the 
riding time between (F) and (T) is three times longer on the Green Line than on the Blue 
Line. In addition, when transferring at (T), 55% of the passengers transfer to the Green Line 
(path B) due to the higher frequency and slightly shorter walking distances between 
platforms. It should be noted that the multinomial logit model used in this application may 
overestimate the probability of transferring at (T) due to its well-known IIA characteristic 
[27]. More general discrete choice models can account for correlations among alternatives, a 
problem that received only little attention in the transit path context [28]. 

Under normal operating conditions with platform-level RTI (R1), the average journey 
time is 1081 seconds. Waiting times and walking times account for 49% of the total time. 
When station-level RTI was provided the shares of passengers choosing to transfer at (F) and 
(T) did not change, as this information does not affect alighting decisions. However, 
passengers transferring at (T) utilized this information when choosing the platform and line 
that minimize their waiting time, leading to almost equal shares between paths B and C and 
3% savings in total journey time. When passengers have access to network-level information, 
the share of passengers transferring at (F) decreased relatively to the other information 
scenarios. This is due to the effect of the information at the origin stop on the alighting stop 
decision. This shift resulted in time savings because of substantial reduction in the average 
time spent on-board. Nevertheless, it simultaneously implies longer out-of-vehicle time as 
transferring at (T) involves longer walking distances.   

Table 1 
Figure 4 
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In the case that the frequency on the Green Line is sharply reduced due to service 
disruptions (DF), the total journey time obviously increases compared to the regular 
conditions scenario due to longer waiting times, while in-vehicle times remain unchanged. 
This increase can be reduced by providing more comprehensive RTI to passengers. With 
station-level information, more passengers transferring at (T) choose to continue with the Red 
Line rather than the Green Line resulting in an increase of 44% in the market share of Path C 
compared with the platform-level RTI scenario. Note that the availability of station-level RTI 
can only influence passengers’ connection decision (to which stop to walk) and not at which 

stop to alight. When RTI regarding expected arrival times at downstream stops is available to 
passengers at the time they make the alighting decision, the share of path A decreases 
compared to the platform-level scenario. More than 16% of the passengers that transferred at 
(F) choose to continue on the Blue Line to (T), where there are more attractive transfer 
alternatives. Compared with the base case, RTI yields in this case substantial time savings of 
9% when provided at the station-level and 11% when it is provided at the network-level.  

When a disruption that causes severe delays on the Blue Line occurs (DR), passengers 
experience longer travel times, mainly due to longer in-vehicle times. Waiting times also 
increase as delays are propagated and affect trip chaining and service regularity. Providing 
RTI at the station-level did not affect passengers’ decisions in this case, as service disruption 

almost did not influence arriving times at (T). However, when passengers were informed 
about the expected delay, they shifted dramatically to (F) – an increase of 30% in the market 
share of path A to avoid the disrupted service segment. Information provision results in this 
case in a reduction of over 9% in average passenger journey time compared to the base case.  

When lacking RTI, passengers carry out decisions based on their prior knowledge. 
Therefore, path market shares are almost the same for all base case scenarios, regardless of 
operational conditions. Under all operational conditions, RTI provision affected passenger 
path decisions and resulted in substantial time savings. Note that due to the utility function 
specification, the uncertainty imposed by service disruption is not taken into account. 
Presumably, route choice shifts could be more dramatic if service disruption involves high 
uncertainty levels. As expected, increasing level of RTI comprehensiveness leads to 
increased time savings. However, the marginal benefit from providing additional RTI 
depends on network configuration and service conditions. These factors determine the 
importance of more informed platform choice and alighting decisions. 

The previous scenarios are based on the real-world timetable. However an 
investigation of the Blue and Green lines schedules at (F) indicated that there is a potential 
for improving transfer coordination. The coordination was based on setting the scheduled 
time of the Green Line at (F) to follow the scheduled time of the Blue Line. The exact 
coordination was calculated according to the 80th percentile of the distribution of walking 
time between the two platforms. The departure times of the Green Line trains from all other 
stops were shifted accordingly, basically implying slightly shifted dispatching times from the 
origin terminal. In order to benefit from this coordination, passengers have to be informed 
with RTI regarding downstream transfer stops. This scenario was simulated under regular 
operational conditions, when the effect of scheduled coordination can be evaluated.  

The results indicate that the transfer coordination improvement can lead to substantial 
journey time benefits. The shifted dispatching times of the Green Line resulted in a decrease 
of 18% in average waiting time compared with the base case under the same level of 
information provision. However, the overall time savings are only 5% because more 
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passengers transferred at (F) - taking a slower line. But by doing so they reduced their 
waiting and walking times. Perhaps some of the time savings yielded from coordination could 
be achieved even in the absence of RTI by communicating it to travellers and day-to-day 
learning. 

Dynamic transit assignment enables us to analyze how passenger path choice evolves 
during the simulation time and the varying operational conditions in the transit network. For 
example, similar aggregated market shares can be obtained from various time-dependent load 
performances. Figure 5 presents the coefficient of variation of boarding passengers at stop (F) 
on the Green Line. The variation was calculated over all trips of Green Line routes. Note that 
the coefficient of variation varies between scenarios that yielded the same market shares (see 
Figure 4). The variability is virtually the same for platform-level and stop-level scenarios 
with the same operation conditions, since both levels do not influence passenger alighting 
decision. In contrast, network-level RTI is associated with higher variability in passenger 
loads. Since passengers incorporate time-dependent information in their decision process, 
passenger activity has a more uneven pattern. The case of scenario DR3 is different since the 
main function of RTI is to inform passengers about the exceptional riding times on the Blue 
Line. The large numbers of passengers choosing to alight at (F) are the reason for the 
decrease in the coefficient of variation indicator. Similarly, the lower levels of variability 
under the DF scenarios are due to the accumulation of passengers during the long service 
headways. The coordination scenario described above (noted by C3) reduced the variability 
of boarding volumes compared with the base case. With the current timetable, RTI at the 
network-level leads to more uneven passenger patterns at (F) depending on the respective 
expected arrival time. However, when transfer at (F) is coordinated, passengers consistently 
choose to transfer there when this information is available. 

Figure 5 

5. CONCLUSIONS 
Transit trips involve sequential path decision-making that relies on passenger prior-
knowledge and the available real-time information en-route. The evaluation of the affects of 
RTI requires dynamic modeling of transit operations and passenger path choice. BusMezzo, a 
mesoscopic transit and traffic simulation model, represents traffic dynamics, dwell times, 
timetables and vehicle scheduling, control strategies and passenger path choice process. The 
model considers passengers’ progress in the transit network as a sequence of discrete choice 
decisions. At each decision point, the time-dependent expectations of passenger regarding 
travel time components are taken into account.  

This model was used as an evaluation and analysis tool for a case study based on the 
Stockholm’s Metro network. The choice-set generation model composed all reasonable paths 
and the dynamic path choice model processed passenger decisions under various operational 
conditions and RTI provision scenarios. The results indicate that providing more 
comprehensive RTI has the potential to lead to path choice shifts and time savings. It is 
presumed that an application for a more extensive network will yield greater gains. The 
experiment suggests that operators should provide RTI at the station-level to enable more 
informed travel decisions that will result in time gains. This information can be displayed at 
the decision point within a transit facility or by providing RTI regarding nearby stops. In 
addition, significant benefits can be achieved by simple improvements in transfer 
coordination.  
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The dynamic transit loading model is yet to be validated with a system-wide case 
study and real-world data. Furthermore, the model has to be estimated by associating travel 
attributes (i.e. time components, transfer characteristics, monetary cost) with path alternatives 
[29]. An important concern for such an application is how to capture correlations among 
overlapping path alternatives, possibly by applying path-size Logit model in the context of 
transit trips [30]. In addition, the model can be further developed to enable a mixed 
frequency-based and schedule-based passenger arrival patterns as realistic networks consist 
typically on both services. 
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TABLE 1 Average Passenger Journey Time Components 

Scenario Total journey 
time 
[sec] 

Change in total 
journey time 

In-vehicle time 
[sec] 

Out-of-vehicle time 
[sec] 

R1 1081  554 527 
R2 1046 -3.2%  557 489 
R3 1035 -4.3%  538 497 

DF1 1418  553 865 
DF2 1293 -8.8%  545 748 
DF3 1260 -11.1%  523 737 
DR1 1771  1116 655 
DR2 1733 -2.2%  1115 617 
DR3 1603 -9.5%  1054 549 
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FIGURE 1 Passenger path choice process. 
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FIGURE 2 Stockholm Metro network (up) and the inner-city part of the network 
(down). 
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FIGURE 3 Network configuration and travel attributes of the relevant trip components. 
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FIGURE 4 Path choice distribution. 
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FIGURE 5 Coefficient of variation of the number of boarding passengers at stop (F) on 
the Green Line. 

 


